Bahfenne Silmarilly, Frost Ray L
Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia.
Spectrochim Acta A Mol Biomol Spectrosc. 2009 Sep 15;74(1):100-3. doi: 10.1016/j.saa.2009.05.011. Epub 2009 May 22.
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb(2)Sb(2)O(6)(O,OH). The mineral is characterised by an intense Raman band at 656 cm(-1) assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm(-1) are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328c m(-1) are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm(-1) may be assigned to deltaOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm(-1) are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm(-1) supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb(2)Sb(2)O(6)(O,OH,H(2)O).
拉曼光谱与红外光谱相结合已被用于表征锑酸盐矿物宾德海姆矿Pb(2)Sb(2)O(6)(O,OH)。该矿物的特征是在656 cm(-1)处有一个强拉曼带,归属于SbO伸缩振动。在664、749和814 cm(-1)处的其他较低强度带也归属于伸缩振动。这一观察结果表明结构中SbO单元的不等价性。在293、312和328 cm(-1)处的低强度拉曼带归属于OSbO弯曲振动。在979、1008、1037和1058 cm(-1)处的红外带可能归属于SbOH单元的δOH变形模式。在1603和1640 cm(-1)处的红外带归属于水的弯曲振动,表明水参与了宾德海姆矿的结构。以3250 cm(-1)为中心的宽红外带支持这一概念。因此,宾德海姆矿的真实化学式受到质疑,可能应写成Pb(2)Sb(2)O(6)(O,OH,H(2)O)。