Suppr超能文献

一种最优治疗方案可归因益处的广义估计量。

A generalized estimator of the attributable benefit of an optimal treatment regime.

作者信息

Brinkley Jason, Tsiatis Anastasios, Anstrom Kevin J

机构信息

Department of Biostatistics, East Carolina University, Greenville, North Carolina 27834, USA.

出版信息

Biometrics. 2010 Jun;66(2):512-22. doi: 10.1111/j.1541-0420.2009.01282.x. Epub 2009 Jun 9.

Abstract

For many diseases where there are several treatment options often there is no consensus on the best treatment to give individual patients. In such cases, it may be necessary to define a strategy for treatment assignment; that is, an algorithm that dictates the treatment an individual should receive based on their measured characteristics. Such a strategy or algorithm is also referred to as a treatment regime. The optimal treatment regime is the strategy that would provide the most public health benefit by minimizing as many poor outcomes as possible. Using a measure that is a generalization of attributable risk (AR) and notions of potential outcomes, we derive an estimator for the proportion of events that could have been prevented had the optimal treatment regime been implemented. Traditional AR studies look at the added risk that can be attributed to exposure of some contaminant; here we will instead study the benefit that can be attributed to using the optimal treatment strategy. We will show how regression models can be used to estimate the optimal treatment strategy and the attributable benefit of that strategy. We also derive the large sample properties of this estimator. As a motivating example, we will apply our methods to an observational study of 3856 patients treated at the Duke University Medical Center with prior coronary artery bypass graft surgery and further heart-related problems requiring a catheterization. The patients may be treated with either medical therapy alone or a combination of medical therapy and percutaneous coronary intervention without a general consensus on which is the best treatment for individual patients.

摘要

对于许多存在多种治疗选择的疾病,对于给个体患者提供最佳治疗方法往往没有共识。在这种情况下,可能有必要定义一种治疗分配策略;也就是说,一种根据个体测量特征来决定其应接受何种治疗的算法。这样的策略或算法也被称为治疗方案。最优治疗方案是通过尽可能减少不良结局来提供最大公共卫生效益的策略。使用一种可归因风险(AR)的广义度量和潜在结果的概念,我们推导出一个估计值,用于估计如果实施最优治疗方案原本可以预防的事件比例。传统的AR研究关注可归因于某种污染物暴露的额外风险;在这里,我们将转而研究可归因于使用最优治疗策略的益处。我们将展示如何使用回归模型来估计最优治疗策略及其该策略的可归因益处。我们还推导出了这个估计值的大样本性质。作为一个激励性示例,我们将把我们的方法应用于一项对3856名在杜克大学医学中心接受过冠状动脉搭桥手术且因进一步的心脏相关问题需要进行导管插入术的患者的观察性研究。这些患者可以单独接受药物治疗,也可以接受药物治疗与经皮冠状动脉介入治疗的联合治疗,对于个体患者哪种是最佳治疗方法并没有普遍共识。

相似文献

1
A generalized estimator of the attributable benefit of an optimal treatment regime.
Biometrics. 2010 Jun;66(2):512-22. doi: 10.1111/j.1541-0420.2009.01282.x. Epub 2009 Jun 9.
2
A doubly robust estimator for the attributable benefit of a treatment regime.
Stat Med. 2014 Dec 20;33(29):5057-73. doi: 10.1002/sim.6312. Epub 2014 Sep 26.
3
Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective.
Lifetime Data Anal. 2017 Oct;23(4):585-604. doi: 10.1007/s10985-016-9376-x. Epub 2016 Aug 1.
5
The Current State of Coronary Revascularization: Coronary Artery Bypass Graft Surgery Versus Percutaneous Coronary Interventions.
Curr Cardiol Rep. 2024 Sep;26(9):919-933. doi: 10.1007/s11886-024-02090-x. Epub 2024 Jul 10.

引用本文的文献

1
Nonparametric Biomarker Based Treatment Selection With Reproducibility Data.
Stat Med. 2024 Nov 30;43(27):5077-5087. doi: 10.1002/sim.10218. Epub 2024 Sep 18.
2
Evaluating the Effectiveness of Personalized Medicine With Software.
Front Big Data. 2021 May 18;4:572532. doi: 10.3389/fdata.2021.572532. eCollection 2021.
3
Evaluating biomarkers for treatment selection from reproducibility studies.
Biostatistics. 2022 Jan 13;23(1):173-188. doi: 10.1093/biostatistics/kxaa018.
4
Robustifying Trial-Derived Optimal Treatment Rules for A Target Population.
Electron J Stat. 2019;13(1):1717-1743. doi: 10.1214/19-EJS1540. Epub 2019 Apr 30.
5
Value-based and benefit-based strategies in deciding to bring a test into use should be distinguished.
Diagn Progn Res. 2017 Feb 8;1:4. doi: 10.1186/s41512-016-0003-9. eCollection 2017.
6
Development and evaluating multimarker models for guiding treatment decisions.
BMC Med Inform Decis Mak. 2018 Jun 28;18(1):52. doi: 10.1186/s12911-018-0619-5.
7
Evaluation of biomarkers for treatment selection using individual participant data from multiple clinical trials.
Stat Med. 2018 Apr 30;37(9):1439-1453. doi: 10.1002/sim.7608. Epub 2018 Feb 14.
8
On Enrichment Strategies for Biomarker Stratified Clinical Trials.
J Biopharm Stat. 2018;28(2):292-308. doi: 10.1080/10543406.2017.1379532. Epub 2017 Oct 30.
10
Optimal treatment regimes for survival endpoints using a locally-efficient doubly-robust estimator from a classification perspective.
Lifetime Data Anal. 2017 Oct;23(4):585-604. doi: 10.1007/s10985-016-9376-x. Epub 2016 Aug 1.

本文引用的文献

1
Incidence and predictors of sudden cardiac death in patients with diastolic heart failure.
J Cardiovasc Electrophysiol. 2007 Dec;18(12):1231-5. doi: 10.1111/j.1540-8167.2007.00957.x. Epub 2007 Sep 10.
2
Standard errors for attributable risk for simple and complex sample designs.
Biometrics. 2005 Sep;61(3):847-55. doi: 10.1111/j.1541-0420.2005.00355.x.
4
The occurrence of lung cancer in man.
Acta Unio Int Contra Cancrum. 1953;9(3):531-41.
5
A review of adjusted estimators of attributable risk.
Stat Methods Med Res. 2001 Jun;10(3):195-216. doi: 10.1177/096228020101000303.
6
Using observational data from registries to compare treatments: the fallacy of omnimetrics.
Stat Med. 1984 Oct-Dec;3(4):361-73. doi: 10.1002/sim.4780030413.
8
Digitalis--a new controversy regarding an old drug. The pitfalls of inappropriate methods.
Circulation. 1986 Jan;73(1):14-8. doi: 10.1161/01.cir.73.1.14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验