Suppr超能文献

强化针对目标人群的试验衍生最优治疗规则

Robustifying Trial-Derived Optimal Treatment Rules for A Target Population.

作者信息

Zhao Ying-Qi, Zeng Donglin, Tangen Catherine M, LeBlanc Michael L

机构信息

Associate Member, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109.

Professor, Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599.

出版信息

Electron J Stat. 2019;13(1):1717-1743. doi: 10.1214/19-EJS1540. Epub 2019 Apr 30.

Abstract

Treatment rules based on individual patient characteristics that are easy to interpret and disseminate are important in clinical practice. Properly planned and conducted randomized clinical trials are used to construct individualized treatment rules. However, it is often a concern that trial participants lack representativeness, so it limits the applicability of the derived rules to a target population. In this work, we use data from a single trial study to propose a two-stage procedure to derive a robust and parsimonious rule to maximize the benefit in the target population. The procedure allows a wide range of possible covariate distributions in the target population, with minimal assumptions on the first two moments of the covariate distribution. The practical utility and favorable performance of the methodology are demonstrated using extensive simulations and a real data application.

摘要

基于易于解释和传播的个体患者特征的治疗规则在临床实践中很重要。精心规划和实施的随机临床试验用于构建个体化治疗规则。然而,人们常常担心试验参与者缺乏代表性,因此这限制了所推导规则对目标人群的适用性。在这项工作中,我们使用来自单个试验研究的数据提出了一种两阶段程序,以推导一个稳健且简洁的规则,从而在目标人群中最大化获益。该程序允许目标人群中存在广泛的协变量分布可能性,对协变量分布的前两个矩的假设最少。通过广泛的模拟和实际数据应用证明了该方法的实际效用和良好性能。

相似文献

4
Learning Optimal Distributionally Robust Individualized Treatment Rules.学习最优分布鲁棒个体化治疗规则。
J Am Stat Assoc. 2021;116(534):659-674. doi: 10.1080/01621459.2020.1796359. Epub 2020 Sep 15.
5
LIBERTI: A SMART study in plastic surgery.利伯蒂:一项整形手术中的智能研究。
Clin Trials. 2018 Jun;15(3):286-293. doi: 10.1177/1740774518762435. Epub 2018 Mar 25.
10
Estimating individualized treatment rules with risk constraint.通过风险约束估计个体化治疗规则。
Biometrics. 2020 Dec;76(4):1310-1318. doi: 10.1111/biom.13232. Epub 2020 Feb 18.

引用本文的文献

5
Discussion of Kallus (2020) and Mo et al (2020).
J Am Stat Assoc. 2021;116(534):690-693. doi: 10.1080/01621459.2020.1833887. Epub 2021 Apr 1.
7
Learning Optimal Distributionally Robust Individualized Treatment Rules.学习最优分布鲁棒个体化治疗规则。
J Am Stat Assoc. 2021;116(534):659-674. doi: 10.1080/01621459.2020.1796359. Epub 2020 Sep 15.

本文引用的文献

3
8
Q-LEARNING WITH CENSORED DATA.带删失数据的Q学习法
Ann Stat. 2012 Feb 1;40(1):529-560. doi: 10.1214/12-AOS968.
9
A robust method for estimating optimal treatment regimes.一种估计最优治疗方案的稳健方法。
Biometrics. 2012 Dec;68(4):1010-8. doi: 10.1111/j.1541-0420.2012.01763.x. Epub 2012 May 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验