Araci Ismail E, Mendes Sergio B, Yurt Nasuhi, Honkanen Seppo, Peyghambarian N
Opt Express. 2007 Apr 30;15(9):5595-603. doi: 10.1364/oe.15.005595.
A highly sensitive technique based on optical absorption using a single-mode, channel integrated optical waveguide is described for broad spectral band detection and analysis of heme-containing protein films at a glass/water interface. Fabrication steps and device characteristics of optical waveguides suitable for operation in the wavelength range of 400 - 650 nm are described. Experimental results reported here show a limit of detection smaller than 100 pg/cm(2) for a submonolayer of ferricytochrome c by probing the Soret transition band with a 406-nm semiconductor diode laser propagating in a single-mode, ion-exchanged channel waveguide. By taking advantage of the exceptionally low limit of detection, we examined the adsorption isotherm of cytochrome c on a glass surface with unprecedented detail. Unlike other surface-specific techniques (e.g. SPR, integrated optic Mach-Zehnder interferometer) that probe local refractive-index changes and therefore are very susceptible to temperature fluctuations, the integrated optical waveguide absorption technique probes molecular-specific transition bands and is expected to be less vulnerable to environmental perturbations.