Suppr超能文献

在切线束治疗中表面堆积区域的 AAA 和 PBC 计算精度。使用蒙特卡罗代码 PENELOPE 进行的体模和乳房案例研究。

AAA and PBC calculation accuracy in the surface build-up region in tangential beam treatments. Phantom and breast case study with the Monte Carlo code PENELOPE.

机构信息

Department of Hospital Physics, Karolinska University Hospital and Karolinska Institute, Stockholm, Sweden.

出版信息

Radiother Oncol. 2009 Oct;93(1):94-101. doi: 10.1016/j.radonc.2009.05.010. Epub 2009 Jun 21.

Abstract

BACKGROUND AND PURPOSE

In tangential beam treatments accurate dose calculation of the absorbed dose in the build-up region is of major importance, in particular when the target has superficial extension close to the skin. In most analytical treatment planning systems (TPSs) calculations depend on the experimental measurements introduced by the user in which accuracy might be limited by the type of detector employed to perform them. To quantify the discrepancy between analytically calculated and delivered dose in the build-up region, near the skin of a patient, independent Monte Carlo (MC) simulations using the penelope code were performed. Dose distributions obtained with MC simulations were compared with those given by the Pencil Beam Convolution (PBC) algorithm and the Analytical Anisotropic Algorithm (AAA) implemented in the commercial TPS Eclipse.

MATERIAL AND METHODS

A cylindrical phantom was used to approximate the breast contour of a patient for MC simulations and the TPS. Calculations of the absorbed doses were performed for 6 and 18MV beams for four different angles of incidence: 15 degrees , 30 degrees , 45 degrees and 75 degrees and different field sizes: 3x3cm(2), 10x10cm(2) and 40x40cm(2). Absorbed doses along the phantom central axis were obtained with both the PBC algorithm and the AAA and compared to those estimated by the MC simulations. Additionally, a breast patient case was calculated with two opposed 6MV photon beams using all the aforementioned analytical and stochastic algorithms.

RESULTS

For the 6MV photon beam in the phantom case, both the PBC algorithm and the AAA tend to underestimate the absorbed dose in the build-up region in comparison to MC results. These differences are clinically irrelevant and are included in a 1mm range. This tendency is also confirmed in the breast patient case. For the 18MV beam the PBC algorithm underestimates the absorbed dose with respect to the AAA. In comparison to MC simulations the PBC algorithm tends to underestimate the dose after the first 2-3mm of tissue for larger angles but seems to be in good agreement for smaller angles. In the first millimetre of depth instead the PBC tends to overestimate the dose for smaller angles and underestimate it for larger angle of incidence. Instead, the AAA overestimates absorbed doses with respect to MC results for all angles of incidence and at all depths. This behaviour seems to be due to the electron contamination model, which is not able to provide accurate absorbed doses in the build-up region. Even for this case the differences are unlikely to be of clinical significance as 18MV is not usually used to treat superficial targets.

CONCLUSIONS

The PBC algorithm and the AAA implemented in the TPS Eclipse system version 8.0.05, both yield equivalent calculations, after the first 2mm of tissue, of the absorbed dose for 6MV photon beams when a grid size smaller than 5mm is used. When 18MV photon beams are used care should be taken because the results of the AAA are highly dependent on the beam configuration.

摘要

背景与目的

在切线束治疗中,准确计算建成区的吸收剂量非常重要,尤其是当靶区有靠近皮肤的表面延伸时。在大多数分析性治疗计划系统(TPS)中,计算依赖于用户引入的实验测量,其准确性可能受到用于执行这些测量的探测器类型的限制。为了量化在患者皮肤附近的建成区中分析计算和实际交付剂量之间的差异,使用 Penelope 代码进行了独立的蒙特卡罗(Monte Carlo,MC)模拟。将通过 MC 模拟获得的剂量分布与由 Pencil Beam Convolution(PBC)算法和在商业 Eclipse TPS 中实现的 Analytical Anisotropic Algorithm(AAA)给出的剂量分布进行比较。

材料与方法

使用圆柱形体模来近似患者的乳房轮廓,以便进行 MC 模拟和 TPS 计算。对于 6 和 18MV 射线束,针对四种不同入射角(15 度、30 度、45 度和 75 度)和不同射野大小(3x3cm²、10x10cm²和 40x40cm²)进行了吸收剂量计算。使用 PBC 算法和 AAA 分别在体模中心轴上获得吸收剂量,并将其与 MC 模拟估算值进行比较。此外,使用所有上述分析和随机算法,对一个使用两个相对的 6MV 光子束的乳房患者病例进行了计算。

结果

在体模情况下,对于 6MV 光子束,PBC 算法和 AAA 都倾向于低估建成区的吸收剂量,与 MC 结果相比。这些差异在临床上无意义,且包含在 1mm 范围内。这种趋势在乳房患者病例中也得到了证实。对于 18MV 射线束,PBC 算法低估了与 AAA 的吸收剂量。与 MC 模拟相比,PBC 算法对于较大角度的情况,在组织的前 2-3mm 后往往会低估剂量,但对于较小角度的情况似乎更符合实际。在最初的 1mm 深度处,PBC 算法对于较小角度的情况倾向于高估剂量,而对于较大入射角的情况则倾向于低估剂量。相反,AAA 算法对于所有入射角和所有深度都高估了吸收剂量。这种行为似乎归因于电子污染模型,该模型无法在建成区提供准确的吸收剂量。即使对于这种情况,差异也不太可能具有临床意义,因为通常不使用 18MV 射线来治疗浅层靶区。

结论

在使用网格尺寸小于 5mm 时,Eclipse TPS 系统版本 8.0.05 中实现的 PBC 算法和 AAA 在后 2mm 组织内,对 6MV 光子束的吸收剂量产生等效计算。当使用 18MV 光子束时,需要小心,因为 AAA 的结果高度依赖于射束配置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验