Suppr超能文献

基于非局部均值算法的高加速实时心脏磁共振成像采集的信噪比增强

SNR enhancement of highly-accelerated real-time cardiac MRI acquisitions based on non-local means algorithm.

作者信息

Naegel Benoît, Cernicanu Alexandru, Hyacinthe Jean-Noël, Tognolini Maurizio, Vallée Jean-Paul

机构信息

University of Applied Sciences Western Switzerland (HES-SO), Rue de la Prairie, 4, CH-1202 Geneva, Switzerland.

出版信息

Med Image Anal. 2009 Aug;13(4):598-608. doi: 10.1016/j.media.2009.05.006. Epub 2009 May 31.

Abstract

Real-time cardiac MRI appears as a promising technique to evaluate the mechanical function of the heart. However, ultra-fast MRI acquisitions come with an important signal-to-noise ratio (SNR) penalty, which drastically reduces the image quality. Hence, a real-time denoising approach would be desirable for SNR amelioration. In the clinical context of cardiac dysfunction assessment, long acquisitions are required and for most patients the acquisition takes place with free breathing. Hence, it is necessary to compensate respiratory motion in real-time. In this article, a real-time and interactive method for sequential registration and denoising of real-time MR cardiac images is presented. The method has been experimented on 60 fast MRI acquisitions in five healthy volunteers and five patients. These experiments assessed the feasibility of the method in a real-time context.

摘要

实时心脏磁共振成像似乎是一种评估心脏机械功能的很有前景的技术。然而,超快速磁共振成像采集伴随着重要的信噪比(SNR)损失,这会大幅降低图像质量。因此,一种实时去噪方法对于改善信噪比将是很有必要的。在心脏功能障碍评估的临床背景下,需要长时间采集,并且对于大多数患者来说,采集是在自由呼吸状态下进行的。因此,有必要实时补偿呼吸运动。在本文中,提出了一种用于实时磁共振心脏图像序列配准和去噪的实时交互式方法。该方法已在五名健康志愿者和五名患者的60次快速磁共振成像采集中进行了实验。这些实验评估了该方法在实时情况下的可行性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验