Suppr超能文献

产甲烷八叠球菌酰基辅酶 A 合成酶的 2.1 A 晶体结构揭示了一个用于小支链酰基底物的替代酰基结合口袋。

The 2.1 A crystal structure of an acyl-CoA synthetase from Methanosarcina acetivorans reveals an alternate acyl-binding pocket for small branched acyl substrates.

机构信息

Hauptman-Woodward Medical Research Institute, Buffalo, New York 14203-1102, USA.

出版信息

Proteins. 2009 Nov 15;77(3):685-98. doi: 10.1002/prot.22482.

Abstract

The acyl-AMP forming family of adenylating enzymes catalyze two-step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X-ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140 degrees to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl-CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl-CoA synthetase and 4-chlorobenzoate:CoA ligase. Most interestingly, the acyl-binding pocket of the new structure is compared with other acyl- and aryl-CoA synthetases. A comparison of the acyl-binding pocket of the acyl-CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl-binding pocket.

摘要

酰基辅酶 A 形成酶家族的腺苷酸化酶通过两步反应催化羧酸盐的激活,其化学能量来源于 ATP 水解。该家族的多个成员的 X 射线晶体结构已经确定,与生化研究一起,为这些酶的活性位点和催化机制提供了深入了解。这些研究表明,酶通过 140 度的结构域旋转来重新配置单个活性位点,以催化两个部分反应。我们在这里展示了来自产甲烷八叠球菌的新的中链酰基辅酶 A 合成酶的晶体结构。分析了三个底物的结合口袋,其中 AMP 结合口袋中有许多保守残基。将 CoA 结合口袋与乙酰辅酶 A 合成酶和 4-氯苯甲酸:CoA 连接酶的口袋进行了比较。最有趣的是,新结构的酰基结合口袋与其他酰基和芳基 CoA 合成酶进行了比较。将产甲烷八叠球菌酰基辅酶 A 合成酶的酰基结合口袋与其他结构进行比较,确定了一个用于结合中链羧酸酯的浅口袋。这些见解强调了该家族在酰基结合口袋区域的高序列和结构多样性。

相似文献

2
Characterization of an archaeal medium-chain acyl coenzyme A synthetase from Methanosarcina acetivorans.
J Bacteriol. 2010 Nov;192(22):5982-90. doi: 10.1128/JB.00600-10. Epub 2010 Sep 17.
3
Computational study of the binding mechanism of medium chain acyl-CoA synthetase with substrate in Methanosarcina acetivorans.
J Biotechnol. 2017 Oct 10;259:160-167. doi: 10.1016/j.jbiotec.2017.07.025. Epub 2017 Jul 24.
7
The Roles of Coenzyme A Binding Pocket Residues in Short and Medium Chain Acyl-CoA Synthetases.
Life (Basel). 2023 Jul 28;13(8):1643. doi: 10.3390/life13081643.
8
Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer.
J Biol Chem. 2004 Jul 23;279(30):31717-26. doi: 10.1074/jbc.M400100200. Epub 2004 May 15.
9
Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A.
J Mol Biol. 2009 May 22;388(5):997-1008. doi: 10.1016/j.jmb.2009.03.064. Epub 2009 Apr 1.
10
Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.
Biochemistry. 2006 Sep 26;45(38):11482-90. doi: 10.1021/bi061023e.

引用本文的文献

1
Enzymatic synthesis of azide by a promiscuous N-nitrosylase.
Nat Chem. 2024 Dec;16(12):2066-2075. doi: 10.1038/s41557-024-01646-2. Epub 2024 Sep 27.
2
The Roles of Coenzyme A Binding Pocket Residues in Short and Medium Chain Acyl-CoA Synthetases.
Life (Basel). 2023 Jul 28;13(8):1643. doi: 10.3390/life13081643.
3
The identification and characterization of an oxalyl-CoA synthetase from grass pea ( L.).
RSC Chem Biol. 2022 Feb 8;3(3):320-333. doi: 10.1039/d1cb00202c. eCollection 2022 Mar 9.
5
: A Model for Mechanistic Understanding of Aceticlastic and Reverse Methanogenesis.
Front Microbiol. 2020 Jul 28;11:1806. doi: 10.3389/fmicb.2020.01806. eCollection 2020.
7
Domain atrophy creates rare cases of functional partial protein domains.
Genome Biol. 2015 Apr 30;16(1):88. doi: 10.1186/s13059-015-0655-8.
8
Structures of Mycobacterium tuberculosis FadD10 protein reveal a new type of adenylate-forming enzyme.
J Biol Chem. 2013 Jun 21;288(25):18473-83. doi: 10.1074/jbc.M113.466912. Epub 2013 Apr 26.
9
Lessons from high-throughput protein crystallization screening: 10 years of practical experience.
Expert Opin Drug Discov. 2011 May;6(5):465-80. doi: 10.1517/17460441.2011.566857. Epub 2011 Mar 22.
10
Characterization of an archaeal medium-chain acyl coenzyme A synthetase from Methanosarcina acetivorans.
J Bacteriol. 2010 Nov;192(22):5982-90. doi: 10.1128/JB.00600-10. Epub 2010 Sep 17.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
Structural snapshots for the conformation-dependent catalysis by human medium-chain acyl-coenzyme A synthetase ACSM2A.
J Mol Biol. 2009 May 22;388(5):997-1008. doi: 10.1016/j.jmb.2009.03.064. Epub 2009 Apr 1.
3
Crystal structure of Bacillus cereus D-alanyl carrier protein ligase (DltA) in complex with ATP.
J Mol Biol. 2009 May 1;388(2):345-55. doi: 10.1016/j.jmb.2009.03.040. Epub 2009 Mar 24.
6
Crystal structure and enantiomer selection by D-alanyl carrier protein ligase DltA from Bacillus cereus.
Biochemistry. 2008 Nov 4;47(44):11473-80. doi: 10.1021/bi801363b. Epub 2008 Oct 11.
7
Crystal structure of DltA. Implications for the reaction mechanism of non-ribosomal peptide synthetase adenylation domains.
J Biol Chem. 2008 Nov 21;283(47):32484-91. doi: 10.1074/jbc.M800557200. Epub 2008 Sep 10.
8
Mechanism of 4-chlorobenzoate:coenzyme a ligase catalysis.
Biochemistry. 2008 Aug 5;47(31):8026-39. doi: 10.1021/bi800698m. Epub 2008 Jul 12.
10
Promiscuous partitioning of a covalent intermediate common in the pentein superfamily.
Chem Biol. 2008 May;15(5):467-75. doi: 10.1016/j.chembiol.2008.03.012.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验