Suppr超能文献

古菌中链酰基辅酶 A 合成酶的特性研究。来自产甲烷八叠球菌

Characterization of an archaeal medium-chain acyl coenzyme A synthetase from Methanosarcina acetivorans.

机构信息

Clemson University, Department of Genetics and Biochemistry, Clemson, SC 29634-0318, USA.

出版信息

J Bacteriol. 2010 Nov;192(22):5982-90. doi: 10.1128/JB.00600-10. Epub 2010 Sep 17.

Abstract

Short- and medium-chain acyl coenzyme A (acyl-CoA) synthetases catalyze the formation of acyl-CoA from an acyl substrate, ATP, and CoA. These enzymes catalyze mechanistically similar two-step reactions that proceed through an enzyme-bound acyl-AMP intermediate. Here we describe the characterization of a member of this enzyme family from the methane-producing archaeon Methanosarcina acetivorans. This enzyme, a medium-chain acyl-CoA synthetase designated Macs(Ma), utilizes 2-methylbutyrate as its preferred substrate for acyl-CoA synthesis but cannot utilize acetate and thus cannot catalyze the first step of acetoclastic methanogenesis in M. acetivorans. When propionate or other less favorable acyl substrates, such as butyrate, 2-methylpropionate, or 2-methylvalerate, were utilized, the acyl-CoA was not produced or was produced at reduced levels. Instead, acyl-AMP and PP(i) were released in the absence of CoA, whereas in the presence of CoA, the intermediate was broken down into AMP and the acyl substrate, which were released along with PP(i). These results suggest that although acyl-CoA synthetases may have the ability to utilize a broad range of substrates for the acyl-adenylate-forming first step of the reaction, the intermediate may not be suitable for the thioester-forming second step. The Macs(Ma) structure has revealed the putative acyl substrate- and CoA-binding pockets. Six residues proposed to form the acyl substrate-binding pocket, Lys(256), Cys(298), Gly(351), Trp(259), Trp(237), and Trp(254), were targeted for alteration. Characterization of the enzyme variants indicates that these six residues are critical in acyl substrate binding and catalysis, and even conservative alterations significantly reduced the catalytic ability of the enzyme.

摘要

短链和中链酰基辅酶 A(酰基辅酶 A)合成酶催化酰基底物、ATP 和 CoA 形成酰基辅酶 A。这些酶催化机制相似的两步反应,通过酶结合的酰基-AMP 中间体进行。在这里,我们描述了产甲烷古菌 Methanosarcina acetivorans 中这种酶家族的一个成员的特征。这种酶是一种中链酰基辅酶 A 合成酶,称为 Macs(Ma),它将 2-甲基丁酸用作其酰基辅酶 A合成的首选底物,但不能利用乙酸盐,因此不能催化 M. acetivorans 中的乙酸盐依赖性产甲烷作用的第一步。当丙酸或其他不太有利的酰基底物,如丁酸、2-甲基丙酸盐或 2-甲基戊酸盐被利用时,酰基辅酶 A 不会产生或产生的水平降低。相反,在没有 CoA 的情况下释放酰基-AMP 和 PP(i),而在有 CoA 的情况下,中间体分解成 AMP 和酰基底物,与 PP(i)一起释放。这些结果表明,尽管酰基辅酶 A 合成酶可能具有利用广泛的底物进行反应的酰基-腺苷酸形成的第一步的能力,但该中间体可能不适合硫酯形成的第二步。Macs(Ma)结构揭示了假定的酰基底物和 CoA 结合口袋。六个残基被提议形成酰基底物结合口袋,Lys(256)、Cys(298)、Gly(351)、Trp(259)、Trp(237)和 Trp(254),被改变。酶变体的特征表明,这六个残基对酰基底物结合和催化至关重要,即使是保守的改变也显著降低了酶的催化能力。

相似文献

1
Characterization of an archaeal medium-chain acyl coenzyme A synthetase from Methanosarcina acetivorans.
J Bacteriol. 2010 Nov;192(22):5982-90. doi: 10.1128/JB.00600-10. Epub 2010 Sep 17.
2
Computational study of the binding mechanism of medium chain acyl-CoA synthetase with substrate in Methanosarcina acetivorans.
J Biotechnol. 2017 Oct 10;259:160-167. doi: 10.1016/j.jbiotec.2017.07.025. Epub 2017 Jul 24.
5
The Roles of Coenzyme A Binding Pocket Residues in Short and Medium Chain Acyl-CoA Synthetases.
Life (Basel). 2023 Jul 28;13(8):1643. doi: 10.3390/life13081643.
6
3-Hydroxypropionyl-coenzyme A synthetase from Metallosphaera sedula, an enzyme involved in autotrophic CO2 fixation.
J Bacteriol. 2008 Feb;190(4):1383-9. doi: 10.1128/JB.01593-07. Epub 2007 Dec 28.
9
Structural basis of the substrate-specific two-step catalysis of long chain fatty acyl-CoA synthetase dimer.
J Biol Chem. 2004 Jul 23;279(30):31717-26. doi: 10.1074/jbc.M400100200. Epub 2004 May 15.
10
Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.
Biochemistry. 2006 Sep 26;45(38):11482-90. doi: 10.1021/bi061023e.

引用本文的文献

2
The Roles of Coenzyme A Binding Pocket Residues in Short and Medium Chain Acyl-CoA Synthetases.
Life (Basel). 2023 Jul 28;13(8):1643. doi: 10.3390/life13081643.
3
Alleviating glucose repression and enhancing respiratory capacity to increase itaconic acid production.
Synth Syst Biotechnol. 2022 Dec 24;8(1):129-140. doi: 10.1016/j.synbio.2022.12.007. eCollection 2023 Mar.
4
: A Model for Mechanistic Understanding of Aceticlastic and Reverse Methanogenesis.
Front Microbiol. 2020 Jul 28;11:1806. doi: 10.3389/fmicb.2020.01806. eCollection 2020.
5
Role of motif III in catalysis by acetyl-CoA synthetase.
Archaea. 2012;2012:509579. doi: 10.1155/2012/509579. Epub 2012 Aug 15.

本文引用的文献

2
Mechanism of 4-chlorobenzoate:coenzyme a ligase catalysis.
Biochemistry. 2008 Aug 5;47(31):8026-39. doi: 10.1021/bi800698m. Epub 2008 Jul 12.
5
Methanosaeta, the forgotten methanogen?
Trends Microbiol. 2007 Apr;15(4):150-5. doi: 10.1016/j.tim.2007.02.002. Epub 2007 Feb 21.
6
Characterization of the acyl substrate binding pocket of acetyl-CoA synthetase.
Biochemistry. 2006 Sep 26;45(38):11482-90. doi: 10.1021/bi061023e.
7
Quantitative proteomics of the archaeon Methanococcus maripaludis validated by microarray analysis and real time PCR.
Mol Cell Proteomics. 2006 May;5(5):868-81. doi: 10.1074/mcp.M500369-MCP200. Epub 2006 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验