Krissian Karl, Aja-Fernández Santiago
Spanish Ministry of Science and Innovation, Centro de Tecnología Médica, Dep. de Señales y Comunicaciones, Universidad de Las Palmas de Gran Canaria, Campus de Tafira, 35017 Las Palmas, Spain.
IEEE Trans Image Process. 2009 Oct;18(10):2265-74. doi: 10.1109/TIP.2009.2025553. Epub 2009 Jun 19.
A new filtering method to remove Rician noise from magnetic resonance images is presented. This filter relies on a robust estimation of the standard deviation of the noise and combines local linear minimum mean square error filters and partial differential equations for MRI, as the speckle reducing anisotropic diffusion did for ultrasound images. The parameters of the filter are automatically chosen from the estimated noise. This property improves the convergence rate of the diffusion while preserving contours, leading to more robust and intuitive filtering. The partial derivative equation of the filter is extended to a new matrix diffusion filter which allows a coherent diffusion based on the local structure of the image and on the corresponding oriented local standard deviations. This new filter combines volumetric, planar, and linear components of the local image structure. The numerical scheme is explained and visual and quantitative results on simulated and real data sets are presented. In the experiments, the new filter leads to the best results.
提出了一种从磁共振图像中去除莱斯噪声的新滤波方法。该滤波器依赖于对噪声标准差的稳健估计,并结合了局部线性最小均方误差滤波器和用于磁共振成像的偏微分方程,就像斑点减少各向异性扩散用于超声图像那样。滤波器的参数根据估计出的噪声自动选择。这一特性提高了扩散的收敛速度,同时保留了轮廓,从而实现更稳健、更直观的滤波。滤波器的偏导数方程被扩展为一种新的矩阵扩散滤波器,该滤波器能够基于图像的局部结构和相应的定向局部标准差进行相干扩散。这种新滤波器结合了局部图像结构的体素、平面和线性分量。文中解释了数值方案,并给出了在模拟数据集和真实数据集上的视觉和定量结果。在实验中,新滤波器产生了最佳结果。