Srivastava Nimesh, Sahoo Gyana Ranjan, Voss Henning U, Niogi Sumit N, Freed Jack H, Srivastava Madhur
Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
EZ Diagnostics Inc., Ithaca, NY 14850, USA.
IEEE Access. 2024;12:135730-135745. doi: 10.1109/access.2024.3449811. Epub 2024 Aug 26.
Magnetic resonance imaging (MRI) has emerged as a promising technique for non-invasive medical imaging. The primary challenge in MRI is the trade-off between image visual quality and acquisition time. Current MRI image denoising algorithms employ global thresholding to denoise the whole image, which leads to inadequate denoising or image distortion. This study introduces a novel pixel-wise (localized) thresholding approach of singular vectors, obtained from singular value decomposition, to denoise magnetic resonance (MR) images. The pixel-wise thresholding of singular vectors is performed using separate singular values as thresholds at each pixel, which is advantageous given the spatial noise variation throughout the image. The method presented is validated on MR images of a standard phantom approved by the magnetic resonance accreditation program (MRAP). The denoised images display superior visual quality and recover minute structural information otherwise suppressed in the noisy image. The increase in peak-signal-to-noise-ratio (PSNR) and contrast-to-noise-ratio (CNR) values of ≥ 18% and ≥ 200% of the denoised images, respectively, imply efficient noise removal and visual quality enhancement. The structural similarity index (SSIM) of ≥ 0.95 for denoised images indicates that the crucial structural information is recovered through the presented method. A comparison with the standard filtering methods widely used for MRI denoising establishes the superior performance of the presented method. The presented pixel-wise denoising technique reduces the scan time by 2-3 times and has the potential to be integrated into any MRI system to obtain faster and better quality images.
磁共振成像(MRI)已成为一种很有前景的无创医学成像技术。MRI的主要挑战在于图像视觉质量与采集时间之间的权衡。当前的MRI图像去噪算法采用全局阈值对整个图像进行去噪,这会导致去噪不足或图像失真。本研究引入了一种新颖的基于像素(局部)的奇异向量阈值处理方法,该方法通过奇异值分解获得,用于对磁共振(MR)图像进行去噪。基于像素的奇异向量阈值处理是在每个像素处使用单独的奇异值作为阈值来执行的,鉴于图像中空间噪声的变化,这具有优势。所提出的方法在经磁共振认证计划(MRAP)批准的标准体模的MR图像上得到了验证。去噪后的图像显示出卓越的视觉质量,并恢复了原本在噪声图像中被抑制的细微结构信息。去噪后图像的峰值信噪比(PSNR)和对比噪声比(CNR)值分别提高了≥18%和≥200%,这意味着有效地去除了噪声并增强了视觉质量。去噪后图像的结构相似性指数(SSIM)≥0.95表明通过所提出的方法恢复了关键的结构信息。与广泛用于MRI去噪的标准滤波方法进行比较,证实了所提出方法的卓越性能。所提出的基于像素的去噪技术将扫描时间缩短了2至3倍,并且有潜力集成到任何MRI系统中,以获得更快且质量更高的图像。