Artificial Intelligence in Healthcare, Intelligent Information Processing Lab, National Center of Artificial Intelligence, University of Engineering and Technology, Peshawar 25120, Pakistan.
Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi 23640, Pakistan.
Sensors (Basel). 2021 Nov 12;21(22):7528. doi: 10.3390/s21227528.
MRI images are visually inspected by domain experts for the analysis and quantification of the tumorous tissues. Due to the large volumetric data, manual reporting on the images is subjective, cumbersome, and error prone. To address these problems, automatic image analysis tools are employed for tumor segmentation and other subsequent statistical analysis. However, prior to the tumor analysis and quantification, an important challenge lies in the pre-processing. In the present study, permutations of different pre-processing methods are comprehensively investigated. In particular, the study focused on Gibbs ringing artifact removal, bias field correction, intensity normalization, and adaptive histogram equalization (AHE). The pre-processed MRI data is then passed onto 3D U-Net for automatic segmentation of brain tumors. The segmentation results demonstrated the best performance with the combination of two techniques, i.e., Gibbs ringing artifact removal and bias-field correction. The proposed technique achieved mean dice score metrics of 0.91, 0.86, and 0.70 for the whole tumor, tumor core, and enhancing tumor, respectively. The testing mean dice scores achieved by the system are 0.90, 0.83, and 0.71 for the whole tumor, core tumor, and enhancing tumor, respectively. The novelty of this work concerns a robust pre-processing sequence for improving the segmentation accuracy of MR images. The proposed method overcame the testing dice scores of the state-of-the-art methods. The results are benchmarked with the existing techniques used in the Brain Tumor Segmentation Challenge (BraTS) 2018 challenge.
MRI 图像由领域专家进行目视检查,以分析和量化肿瘤组织。由于体积庞大的数据,手动报告图像是主观的、繁琐的且容易出错。为了解决这些问题,使用自动图像分析工具进行肿瘤分割和其他后续统计分析。然而,在进行肿瘤分析和量化之前,存在一个重要的挑战,即预处理。在本研究中,全面研究了不同预处理方法的排列组合。特别是,该研究侧重于吉布斯振铃伪影去除、偏置场校正、强度归一化和自适应直方图均衡化 (AHE)。然后,将预处理的 MRI 数据输入到 3D U-Net 中,以实现脑肿瘤的自动分割。分割结果表明,吉布斯振铃伪影去除和偏置场校正两种技术的结合效果最佳。所提出的技术在整个肿瘤、肿瘤核心和增强肿瘤方面的平均骰子分数指标分别达到 0.91、0.86 和 0.70。系统的测试平均骰子分数分别为 0.90、0.83 和 0.71,用于整个肿瘤、核心肿瘤和增强肿瘤。这项工作的新颖之处在于提出了一种用于提高磁共振图像分割准确性的稳健预处理序列。所提出的方法克服了最先进方法的测试骰子分数。结果与 2018 年脑肿瘤分割挑战赛 (BraTS) 中使用的现有技术进行了基准测试。