Chen Mark Z, Zhu Xiaohui, Sun Hui-Qiao, Mao Yuntao S, Wei Yongjie, Yamamoto Masaya, Yin Helen L
Department of Physiology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.
J Biol Chem. 2009 Aug 28;284(35):23743-53. doi: 10.1074/jbc.M109.036509. Epub 2009 Jun 24.
Phosphatidylinositol 4,5-bisphosphate (PIP(2)) has many essential functions and its homeostasis is highly regulated. We previously found that hypertonic stress increases PIP(2) by selectively activating the beta isoform of the type I phosphatidylinositol phosphate 5-kinase (PIP5Kbeta) through Ser/Thr dephosphorylation and promoting its translocation to the plasma membrane. Here we report that hydrogen peroxide (H(2)O(2)) also induces PIP5Kbeta Ser/Thr dephosphorylation, but it has the opposite effect on PIP(2) homeostasis, PIP5Kbeta function, and the actin cytoskeleton. Brief H(2)O(2) treatments decrease cellular PIP(2) in a PIP5Kbeta-dependent manner. PIP5Kbeta is tyrosine phosphorylated, dissociates from the plasma membrane, and has decreased lipid kinase activity. In contrast, the other two PIP5K isoforms are not inhibited by H(2)O(2). We identified spleen tyrosine kinase (Syk), which is activated by oxidants, as a candidate PIP5Kbeta kinase in this pathway, and mapped the oxidant-sensitive tyrosine phosphorylation site to residue 105. The PIP5KbetaY105E phosphomimetic is catalytically inactive and cytosolic, whereas the Y105F non-phosphorylatable mutant has higher intrinsic lipid kinase activity and is much more membrane associated than wild type PIP5Kbeta. These results suggest that during oxidative stress, as modeled by H(2)O(2) treatment, Syk-dependent tyrosine phosphorylation of PIP5Kbeta is the dominant post-translational modification that is responsible for the decrease in cellular PIP(2).
磷脂酰肌醇-4,5-二磷酸(PIP(2))具有多种重要功能,其稳态受到高度调控。我们之前发现,高渗应激通过丝氨酸/苏氨酸去磷酸化选择性激活I型磷脂酰肌醇磷酸5-激酶(PIP5Kβ)的β亚型,并促进其转位至质膜,从而增加PIP(2)。在此我们报告,过氧化氢(H(2)O(2))也可诱导PIP5Kβ丝氨酸/苏氨酸去磷酸化,但它对PIP(2)稳态、PIP5Kβ功能及肌动蛋白细胞骨架具有相反的作用。短暂的H(2)O(2)处理以PIP5Kβ依赖的方式降低细胞内PIP(2)。PIP5Kβ发生酪氨酸磷酸化,从质膜解离,脂质激酶活性降低。相比之下,另外两种PIP5K亚型不受H(2)O(2)抑制。我们确定了被氧化剂激活的脾酪氨酸激酶(Syk)作为该途径中PIP5Kβ的候选激酶,并将氧化剂敏感的酪氨酸磷酸化位点定位至第105位残基。模拟PIP5KβY105E磷酸化的突变体无催化活性且位于胞质中,而Y105F不可磷酸化突变体具有更高的内在脂质激酶活性,且比野生型PIP5Kβ与膜的结合性更强。这些结果表明,在以H(2)O(2)处理模拟的氧化应激过程中,Syk依赖型PIP5Kβ酪氨酸磷酸化是导致细胞内PIP(2)减少的主要翻译后修饰。