Royer John R, Evans Daniel J, Oyarte Loreto, Guo Qiti, Kapit Eliot, Möbius Matthias E, Waitukaitis Scott R, Jaeger Heinrich M
James Franck Institute and Department of Physics, The University of Chicago, Chicago, Illinois 60637, USA.
Nature. 2009 Jun 25;459(7250):1110-3. doi: 10.1038/nature08115.
Thin streams of liquid commonly break up into characteristic droplet patterns owing to the surface-tension-driven Plateau-Rayleigh instability. Very similar patterns are observed when initially uniform streams of dry granular material break up into clusters of grains, even though flows of macroscopic particles are considered to lack surface tension. Recent studies on freely falling granular streams tracked fluctuations in the stream profile, but the clustering mechanism remained unresolved because the full evolution of the instability could not be observed. Here we demonstrate that the cluster formation is driven by minute, nanoNewton cohesive forces that arise from a combination of van der Waals interactions and capillary bridges between nanometre-scale surface asperities. Our experiments involve high-speed video imaging of the granular stream in the co-moving frame, control over the properties of the grain surfaces and the use of atomic force microscopy to measure grain-grain interactions. The cohesive forces that we measure correspond to an equivalent surface tension five orders of magnitude below that of ordinary liquids. We find that the shapes of these weakly cohesive, non-thermal clusters of macroscopic particles closely resemble droplets resulting from thermally induced rupture of liquid nanojets.
由于表面张力驱动的普拉托-瑞利不稳定性,细液流通常会分裂成特征性的液滴模式。当最初均匀的干颗粒物料流分裂成颗粒簇时,会观察到非常相似的模式,尽管宏观颗粒流被认为缺乏表面张力。最近对自由下落颗粒流的研究追踪了流剖面的波动,但聚类机制仍未解决,因为无法观察到不稳定性的完整演化。在这里,我们证明了团簇的形成是由微小的、纳牛顿级的内聚力驱动的,这些内聚力是由范德华相互作用和纳米级表面粗糙度之间的毛细桥共同作用产生的。我们的实验包括在共同移动框架中对颗粒流进行高速视频成像、控制颗粒表面的性质以及使用原子力显微镜测量颗粒间的相互作用。我们测量的内聚力相当于普通液体表面张力的五个数量级以下。我们发现,这些弱内聚、非热的宏观颗粒团簇的形状与液体纳米射流热致破裂产生的液滴非常相似。