Jenke-Kodama Holger, Dittmann Elke
Humboldt-University, Institute of Biology, Department of Molecular Ecology, Chausseestr. 117, 10115 Berlin, Germany.
Nat Prod Rep. 2009 Jul;26(7):874-83. doi: 10.1039/b810283j. Epub 2009 Apr 7.
The increased understanding of both fundamental principles and mechanistic variations of NRPS/PKS megasynthases along with the unprecedented availability of microbial sequences has inspired a number of in silico studies of both enzyme families. The insights that can be extracted from these analyses go far beyond a rough classification of data and have turned bioinformatics into a frontier field of natural products research. As databases are flooded with NRPS/PKS gene sequence of microbial genomes and metagenomes, increasingly reliable structural prediction methods can help to uncover hidden treasures. Already, phylogenetic analyses have revealed that NRPS/PKS pathways should not simply be regarded as enzyme complexes, specifically evolved to product a selected natural product. Rather, they represent a collection of genetic opinions, allowing biosynthetic pathways to be shuffled in a process of perpetual chemical innovations and pathways diversification in nature can give impulses for specificities, protein interactions and genetic engineering of libraries of novel peptides and polyketides. The successful translation of the knowledge obtained from bioinformatic dissection of NRPS/PKS megasynthases into new techniques for drug discovery and design remain challenges for the future.
对非核糖体肽合成酶/聚酮合酶(NRPS/PKS)大型合成酶基本原理和机制变异的深入理解,以及微生物序列前所未有的可得性,激发了对这两个酶家族的一系列计算机模拟研究。从这些分析中可以提取的见解远远超出了对数据的粗略分类,并将生物信息学变成了天然产物研究的前沿领域。随着数据库充斥着微生物基因组和宏基因组的NRPS/PKS基因序列,越来越可靠的结构预测方法有助于发现隐藏的宝藏。系统发育分析已经表明,NRPS/PKS途径不应简单地被视为专门进化以产生选定天然产物的酶复合物。相反,它们代表了一组遗传观点,使生物合成途径能够在持续的化学创新过程中重新组合,自然界中的途径多样化可以为新型肽和聚酮化合物文库的特异性、蛋白质相互作用和基因工程提供动力。将从NRPS/PKS大型合成酶的生物信息学剖析中获得的知识成功转化为药物发现和设计的新技术,仍然是未来的挑战。