Liu Qinghang, Chen Xiongwen, Macdonnell Scott M, Kranias Evangelia G, Lorenz John N, Leitges Michael, Houser Steven R, Molkentin Jeffery D
Children's Hospital Medical Center, Division of Molecular Cardiovascular Biology, 3333 Burnet Ave, University of Cincinnati, Cincinnati, OH 45229-3039, USA.
Circ Res. 2009 Jul 17;105(2):194-200. doi: 10.1161/CIRCRESAHA.109.195313. Epub 2009 Jun 25.
Protein kinase (PK)Calpha, PKCbeta, and PKCgamma comprise the conventional PKC isoform subfamily, which is thought to regulate cardiac disease responsiveness. Indeed, mice lacking the gene for PKCalpha show enhanced cardiac contractility and reduced susceptibility to heart failure. Recent data also suggest that inhibition of conventional PKC isoforms with Ro-32-0432 or Ro-31-8220 enhances heart function and antagonizes failure, although the isoform responsible for these effects is unknown. Here, we investigated mice lacking PKCalpha, PKCbeta, and PKCgamma for effects on cardiac contractility and heart failure susceptibility. PKCalpha(-/-) mice, but not PKCbetagamma(-/-) mice, showed increased cardiac contractility, myocyte cellular contractility, Ca(2+) transients, and sarcoplasmic reticulum Ca(2+) load. PKCalpha(-/-) mice were less susceptible to heart failure following long-term pressure-overload stimulation or 4 weeks after myocardial infarction injury, whereas PKCbetagamma(-/-) mice showed more severe failure. Infusion of ruboxistaurin (LY333531), an orally available PKCalpha/beta/gamma inhibitor, increased cardiac contractility in wild-type and PKCbetagamma(-/-) mice, but not in PKCalpha(-/-) mice. More importantly, ruboxistaurin prevented death in wild-type mice throughout 10 weeks of pressure-overload stimulation, reduced ventricular dilation, enhanced ventricular performance, reduced fibrosis, and reduced pulmonary edema comparable to or better than metoprolol treatment. Ruboxistaurin was also administered to PKCbetagamma(-/-) mice subjected to pressure overload, resulting in less death and heart failure, implicating PKCalpha as the primary target of this drug in mitigating heart disease. As an aside, PKCalphabetagamma triple-null mice showed no defect in cardiac hypertrophy following pressure-overload stimulation. In conclusion, PKCalpha functions distinctly from PKCbeta and PKCgamma in regulating cardiac contractility and heart failure, and broad-acting PKC inhibitors such as ruboxistaurin could represent a novel therapeutic approach in treating human heart failure.
蛋白激酶(PK)Cα、PKCβ和PKCγ构成了传统的蛋白激酶C亚型亚家族,该亚家族被认为参与调节心脏疾病反应。事实上,缺乏PKCα基因的小鼠表现出心脏收缩力增强以及对心力衰竭的易感性降低。近期数据还表明,用Ro-32-0432或Ro-31-8220抑制传统的蛋白激酶C亚型可增强心脏功能并拮抗心力衰竭,尽管负责这些效应的亚型尚不清楚。在此,我们研究了缺乏PKCα、PKCβ和PKCγ的小鼠对心脏收缩力和心力衰竭易感性的影响。PKCα基因敲除(PKCα(-/-))小鼠而非PKCβγ基因敲除(PKCβγ(-/-))小鼠表现出心脏收缩力增加、心肌细胞收缩力增强、Ca(2+)瞬变以及肌浆网Ca(2+)负荷增加。PKCα(-/-)小鼠在长期压力超负荷刺激后或心肌梗死损伤4周后对心力衰竭的易感性较低,而PKCβγ(-/-)小鼠则表现出更严重的心力衰竭。输注鲁比前列酮(LY333531),一种口服可用的PKCα/β/γ抑制剂,可增加野生型和PKCβγ(-/-)小鼠的心脏收缩力,但对PKCα(-/-)小鼠无效。更重要的是,在整个10周的压力超负荷刺激过程中,鲁比前列酮可防止野生型小鼠死亡,减少心室扩张,增强心室功能,减少纤维化,并减少肺水肿,效果与美托洛尔相当或更好。鲁比前列酮也被给予压力超负荷的PKCβγ(-/-)小鼠,导致死亡和心力衰竭减少,这表明PKCα是该药物减轻心脏病的主要靶点。顺便提一下,PKCαβγ三基因敲除小鼠在压力超负荷刺激后心脏肥大方面没有缺陷。总之,PKCα在调节心脏收缩力和心力衰竭方面的功能与PKCβ和PKCγ明显不同,而像鲁比前列酮这样的广谱蛋白激酶C抑制剂可能代表了一种治疗人类心力衰竭的新方法。