Prada-Gracia Diego, Gómez-Gardeñes Jesús, Echenique Pablo, Falo Fernando
Departamento de Física de la Materia Condensada, Universidad de Zaragoza, Zaragoza, Spain.
PLoS Comput Biol. 2009 Jun;5(6):e1000415. doi: 10.1371/journal.pcbi.1000415. Epub 2009 Jun 26.
Knowledge of the Free Energy Landscape topology is the essential key to understanding many biochemical processes. The determination of the conformers of a protein and their basins of attraction takes a central role for studying molecular isomerization reactions. In this work, we present a novel framework to unveil the features of a Free Energy Landscape answering questions such as how many meta-stable conformers there are, what the hierarchical relationship among them is, or what the structure and kinetics of the transition paths are. Exploring the landscape by molecular dynamics simulations, the microscopic data of the trajectory are encoded into a Conformational Markov Network. The structure of this graph reveals the regions of the conformational space corresponding to the basins of attraction. In addition, handling the Conformational Markov Network, relevant kinetic magnitudes as dwell times and rate constants, or hierarchical relationships among basins, completes the global picture of the landscape. We show the power of the analysis studying a toy model of a funnel-like potential and computing efficiently the conformers of a short peptide, dialanine, paving the way to a systematic study of the Free Energy Landscape in large peptides.
了解自由能景观拓扑结构是理解许多生化过程的关键所在。确定蛋白质的构象及其吸引域在研究分子异构化反应中起着核心作用。在这项工作中,我们提出了一个新颖的框架来揭示自由能景观的特征,回答诸如存在多少亚稳构象、它们之间的层次关系是什么,或者过渡路径的结构和动力学是什么等问题。通过分子动力学模拟探索该景观,轨迹的微观数据被编码到一个构象马尔可夫网络中。这个图的结构揭示了与吸引域相对应的构象空间区域。此外,处理构象马尔可夫网络,相关的动力学量如停留时间和速率常数,或吸引域之间的层次关系,完善了景观的全局图景。我们通过研究一个漏斗状势的玩具模型并高效计算短肽二丙氨酸的构象,展示了这种分析方法的威力,为系统研究大肽中的自由能景观铺平了道路。