Suppr超能文献

从分子能量景观到通过景观分析和马尔可夫状态模型的平衡动力学

From molecular energy landscapes to equilibrium dynamics via landscape analysis and markov state models.

作者信息

Kabir Kazi Lutful, Akhter Nasrin, Shehu Amarda

机构信息

Department of Computer Science, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.

Department of Computer Science, Department of Bioengineering, School of Systems Biology, George Mason University, 4400 University Drive, Fairfax, VA 22030, USA.

出版信息

J Bioinform Comput Biol. 2019 Dec;17(6):1940014. doi: 10.1142/S0219720019400146.

Abstract

Molecular dynamics (MD) simulation software allows probing the equilibrium structural dynamics of a molecule of interest, revealing how a molecule navigates its structure space one structure at a time. To obtain a broader view of dynamics, typically one needs to launch many such simulations, obtaining many trajectories. A summarization of the equilibrium dynamics requires integrating the information in the various trajectories, and Markov State Models (MSM) are increasingly being used for this task. At its core, the task involves organizing the structures accessed in simulation into structural states, and then constructing a transition probability matrix revealing the transitions between states. While now considered a mature technology and widely used to summarize equilibrium dynamics, the underlying computational process in the construction of an MSM ignores energetics even though the transition of a molecule between two nearby structures in an MD trajectory is governed by the corresponding energies. In this paper, we connect theory with simulation and analysis of equilibrium dynamics. A molecule navigates the energy landscape underlying the structure space. The structural states that are identified via off-the-shelf clustering algorithms need to be connected to thermodynamically-stable and semi-stable (macro)states among which transitions can then be quantified. Leveraging recent developments in the analysis of energy landscapes that identify basins in the landscape, we evaluate the hypothesis that basins, directly tied to stable and semi-stable states, lead to better models of dynamics. Our analysis indicates that basins lead to MSMs of better quality and thus can be useful to further advance this widely-used technology for summarization of molecular equilibrium dynamics.

摘要

分子动力学(MD)模拟软件能够探究目标分子的平衡结构动力学,揭示分子如何一次一个结构地在其结构空间中移动。为了更全面地了解动力学,通常需要进行许多这样的模拟,以获得许多轨迹。对平衡动力学进行总结需要整合各个轨迹中的信息,马尔可夫状态模型(MSM)越来越多地用于此任务。其核心任务包括将模拟中访问的结构组织成结构状态,然后构建一个转移概率矩阵来揭示状态之间的转变。虽然现在MSM被认为是一项成熟的技术并广泛用于总结平衡动力学,但构建MSM的底层计算过程忽略了能量学,尽管分子在MD轨迹中两个相邻结构之间的转变是由相应的能量控制的。在本文中,我们将理论与平衡动力学的模拟和分析联系起来。分子在结构空间下方的能量景观中移动。通过现成的聚类算法识别出的结构状态需要与热力学稳定和亚稳定(宏观)状态相联系,然后才能对这些状态之间的转变进行量化。利用能量景观分析中的最新进展来识别景观中的盆地,我们评估了这样一个假设,即与稳定和亚稳定状态直接相关的盆地会产生更好的动力学模型。我们的分析表明,盆地会导致质量更好的MSM,因此有助于进一步推动这项广泛用于总结分子平衡动力学的技术发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验