Suppr超能文献

当今的模式形成。

Pattern formation today.

作者信息

Chuong Cheng-Ming, Richardson Michael K

机构信息

Department of Pathology, University of Southern California, Los Angeles, USA.

出版信息

Int J Dev Biol. 2009;53(5-6):653-8. doi: 10.1387/ijdb.082594cc.

Abstract

Patterns are orders embedded in randomness. They may appear as spatial arrangements or temporal series, and the elements may appear identical or with variations. Patterns exist in the physical world as well as in living systems. In the biological world, patterns can range from simple to complex, forming the basic building blocks of life. The process which generates this ordering in the biological world was termed pattern formation. Since Wolpert promoted this concept four decades ago, scientists from molecular biology, developmental biology, stem cell biology, tissue engineering, theoretical modeling and other disciplines have made remarkable progress towards understanding its mechanisms. It is time to review and re-integrate our understanding. Here, we explore the origin of pattern formation, how the genetic code is translated into biological form, and how complex phenotypes are selected over evolutionary time. We present four topics: Principles, Evolution, Development, and Stem Cells and Regeneration. We have interviewed several leaders in the field to gain insight into how their research and the field of pattern formation have shaped each other. We have learned that both molecular process and physico-chemical principles are important for biological pattern formation. New understanding will emerge through integration of the analytical approach of molecular-genetic manipulation and the systemic approach of model simulation. We regret that we could not include every major investigator in the field, but hope that this Special Issue of the Int. J. Dev. Biol. represents a sample of our knowledge of pattern formation today, which will help to stimulate more research on this fundamental process.

摘要

模式是嵌入随机性中的秩序。它们可能表现为空间排列或时间序列,其元素可能相同或存在变化。模式存在于物理世界以及生命系统中。在生物世界里,模式可以从简单到复杂,构成生命的基本构建单元。在生物世界中产生这种秩序的过程被称为模式形成。自从四十年前沃尔珀特提出这一概念以来,来自分子生物学、发育生物学、干细胞生物学、组织工程、理论建模及其他学科的科学家们在理解其机制方面取得了显著进展。现在是时候回顾并重新整合我们的理解了。在此,我们探讨模式形成的起源、遗传密码如何转化为生物形态,以及在进化过程中复杂表型是如何被选择的。我们提出四个主题:原理、进化、发育以及干细胞与再生。我们采访了该领域的几位领军人物,以深入了解他们的研究以及模式形成领域是如何相互影响的。我们了解到分子过程和物理化学原理对于生物模式形成都很重要。通过整合分子遗传操作的分析方法和模型模拟的系统方法将产生新的理解。我们很遗憾未能纳入该领域的每一位主要研究者,但希望《国际发育生物学杂志》的这一特刊能代表我们如今对模式形成的认识,这将有助于激发对这一基本过程的更多研究。

相似文献

1
Pattern formation today.
Int J Dev Biol. 2009;53(5-6):653-8. doi: 10.1387/ijdb.082594cc.
2
Preface to pattern formation special issue.
Int J Dev Biol. 2009;53(5-6):651. doi: 10.1387/ijdb.092946cc.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Models to crack the code of organ regeneration.
Int J Dev Biol. 2018;62(6-7-8):347-350. doi: 10.1387/ijdb.180105fs.
5
Positional Information-A concept underpinning our understanding of developmental biology.
Dev Dyn. 2020 Mar;249(3):298-312. doi: 10.1002/dvdy.116. Epub 2019 Oct 21.
6
Systems approach to developmental biology--designs for robust patterning.
IET Syst Biol. 2013 Apr;7(2):38-49. doi: 10.1049/iet-syb.2012.0042.
9
Pattern formation mechanisms in reaction-diffusion systems.
Int J Dev Biol. 2009;53(5-6):673-81. doi: 10.1387/ijdb.072484vv.
10
Creating to understand - developmental biology meets engineering in Paris.
Development. 2017 Mar 1;144(5):733-736. doi: 10.1242/dev.144915.

引用本文的文献

1
Structural Causes of Pattern Formation and Loss Through Model-Independent Bifurcation Analysis.
Res Sq. 2025 Feb 26:rs.3.rs-6098751. doi: 10.21203/rs.3.rs-6098751/v1.
2
Parsing patterns: Emerging roles of tissue self-organization in health and disease.
Cell. 2024 Jun 20;187(13):3165-3186. doi: 10.1016/j.cell.2024.05.016.
3
Spatiotemporal Patterning Enabled by Gene Regulatory Networks.
ACS Omega. 2023 Jan 17;8(4):3713-3725. doi: 10.1021/acsomega.2c04581. eCollection 2023 Jan 31.
4
Self-organization process in newborn skin organoid formation inspires strategy to restore hair regeneration of adult cells.
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):E7101-E7110. doi: 10.1073/pnas.1700475114. Epub 2017 Aug 10.
5
Deciphering principles of morphogenesis from temporal and spatial patterns on the integument.
Dev Dyn. 2015 Aug;244(8):905-20. doi: 10.1002/dvdy.24281. Epub 2015 Jul 6.
6
p53/p63/p73 in the epidermis in health and disease.
Cold Spring Harb Perspect Med. 2014 Aug 1;4(8):a015248. doi: 10.1101/cshperspect.a015248.
7
Brain basis of self: self-organization and lessons from dreaming.
Front Psychol. 2013 Jul 16;4:408. doi: 10.3389/fpsyg.2013.00408. eCollection 2013.
8
Topology of feather melanocyte progenitor niche allows complex pigment patterns to emerge.
Science. 2013 Jun 21;340(6139):1442-5. doi: 10.1126/science.1230374. Epub 2013 Apr 25.
9
Module-based complexity formation: periodic patterning in feathers and hairs.
Wiley Interdiscip Rev Dev Biol. 2013 Jan-Feb;2(1):97-112. doi: 10.1002/wdev.74.

本文引用的文献

1
Forging patterns and making waves from biology to geology: a commentary on Turing (1952) 'The chemical basis of morphogenesis'.
Philos Trans R Soc Lond B Biol Sci. 2015 Apr 19;370(1666). doi: 10.1098/rstb.2014.0218.
3
How animals get their skin patterns: fish pigment pattern as a live Turing wave.
Int J Dev Biol. 2009;53(5-6):851-6. doi: 10.1387/ijdb.072502sk.
4
Zebrafish development and regeneration: new tools for biomedical research.
Int J Dev Biol. 2009;53(5-6):835-50. doi: 10.1387/ijdb.082615sb.
6
Reptile scale paradigm: Evo-Devo, pattern formation and regeneration.
Int J Dev Biol. 2009;53(5-6):813-26. doi: 10.1387/ijdb.072556cc.
7
Generation of pattern and form in the developing limb.
Int J Dev Biol. 2009;53(5-6):805-12. doi: 10.1387/ijdb.072499mt.
8
Pattern formation in the Drosophila eye disc.
Int J Dev Biol. 2009;53(5-6):795-804. doi: 10.1387/ijdb.072483jr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验