Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033.
111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.
Proc Natl Acad Sci U S A. 2017 Aug 22;114(34):E7101-E7110. doi: 10.1073/pnas.1700475114. Epub 2017 Aug 10.
Organoids made from dissociated progenitor cells undergo tissue-like organization. This in vitro self-organization process is not identical to embryonic organ formation, but it achieves a similar phenotype in vivo. This implies genetic codes do not specify morphology directly; instead, complex tissue architectures may be achieved through several intermediate layers of cross talk between genetic information and biophysical processes. Here we use newborn and adult skin organoids for analyses. Dissociated cells from newborn mouse skin form hair primordia-bearing organoids that grow hairs robustly in vivo after transplantation to nude mice. Detailed time-lapse imaging of 3D cultures revealed unexpected morphological transitions between six distinct phases: dissociated cells, cell aggregates, polarized cysts, cyst coalescence, planar skin, and hair-bearing skin. Transcriptome profiling reveals the sequential expression of adhesion molecules, growth factors, Wnts, and matrix metalloproteinases (MMPs). Functional perturbations at different times discern their roles in regulating the switch from one phase to another. In contrast, adult cells form small aggregates, but then development stalls in vitro. Comparative transcriptome analyses suggest suppressing epidermal differentiation in adult cells is critical. These results inspire a strategy that can restore morphological transitions and rescue the hair-forming ability of adult organoids: () continuous PKC inhibition and () timely supply of growth factors (IGF, VEGF), Wnts, and MMPs. This comprehensive study demonstrates that alternating molecular events and physical processes are in action during organoid morphogenesis and that the self-organizing processes can be restored via environmental reprogramming. This tissue-level phase transition could drive self-organization behavior in organoid morphogenies beyond the skin.
由分离的祖细胞制成的类器官经历组织样组织。这个体外自我组织过程与胚胎器官形成不同,但在体内实现了相似的表型。这意味着遗传密码并不是直接指定形态;相反,复杂的组织结构可能是通过遗传信息和生物物理过程之间的几个中间层的交叉对话来实现的。在这里,我们使用新生和成人皮肤类器官进行分析。从新生小鼠皮肤分离的细胞形成具有毛发原基的类器官,在移植到裸鼠后,在体内可强烈生长毛发。对 3D 培养物的详细延时成像揭示了六个不同阶段之间出乎意料的形态转变:分离细胞、细胞聚集体、极化囊泡、囊泡融合、平面皮肤和毛发皮肤。转录组分析揭示了粘附分子、生长因子、Wnts 和基质金属蛋白酶 (MMPs) 的顺序表达。在不同时间进行功能干扰可以辨别它们在调节从一个阶段到另一个阶段的转换中的作用。相比之下,成年细胞形成小的聚集体,但随后在体外发育停滞。比较转录组分析表明,抑制成年细胞中的表皮分化是关键。这些结果激发了一种策略,可以恢复成年类器官的形态转变并挽救其毛发形成能力:()持续的 PKC 抑制和()及时供应生长因子(IGF、VEGF)、Wnts 和 MMPs。这项全面的研究表明,在类器官形态发生过程中,交替的分子事件和物理过程在起作用,并且自我组织过程可以通过环境重新编程来恢复。这种组织水平的相变可能会推动类器官形态发生中的自组织行为超越皮肤。