Suppr超能文献

多神经元脉冲序列中连续放电模式的统计学意义。

Statistical significance of sequential firing patterns in multi-neuronal spike trains.

作者信息

Diekman Casey O, Sastry P S, Unnikrishnan K P

机构信息

Dept. of Industrial & Operations Engineering and Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA.

出版信息

J Neurosci Methods. 2009 Sep 15;182(2):279-84. doi: 10.1016/j.jneumeth.2009.06.018. Epub 2009 Jun 24.

Abstract

Sequential firings with fixed time delays are frequently observed in simultaneous recordings from multiple neurons. Such temporal patterns are potentially indicative of underlying microcircuits and it is important to know when a repeatedly occurring pattern is statistically significant. These sequences are typically identified through correlation counts. In this paper we present a method for assessing the significance of such correlations. We specify the null hypothesis in terms of a bound on the conditional probabilities that characterize the influence of one neuron on another. This method of testing significance is more general than the currently available methods since under our null hypothesis we do not assume that the spiking processes of different neurons are independent. The structure of our null hypothesis also allows us to rank order the detected patterns. We demonstrate our method on simulated spike trains.

摘要

在多个神经元的同步记录中经常观察到具有固定时间延迟的序列放电。这种时间模式可能指示潜在的微电路,并且了解重复出现的模式何时具有统计学意义很重要。这些序列通常通过相关性计数来识别。在本文中,我们提出了一种评估此类相关性显著性的方法。我们根据表征一个神经元对另一个神经元影响的条件概率的界限来指定零假设。这种检验显著性的方法比目前可用的方法更通用,因为在我们的零假设下,我们不假设不同神经元的尖峰过程是独立的。我们零假设的结构还使我们能够对检测到的模式进行排序。我们在模拟的尖峰序列上展示了我们的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验