Shahbaba Babak, Zhou Bo, Lan Shiwei, Ombao Hernando, Moorman David, Behseta Sam
Department of Statistics, UC Irvine, CA 92697, U.S.A.
Neural Comput. 2014 Sep;26(9):2025-51. doi: 10.1162/NECO_a_00631. Epub 2014 Jun 12.
We propose a scalable semiparametric Bayesian model to capture dependencies among multiple neurons by detecting their cofiring (possibly with some lag time) patterns over time. After discretizing time so there is at most one spike at each interval, the resulting sequence of 1s (spike) and 0s (silence) for each neuron is modeled using the logistic function of a continuous latent variable with a gaussian process prior. For multiple neurons, the corresponding marginal distributions are coupled to their joint probability distribution using a parametric copula model. The advantages of our approach are as follows. The nonparametric component (i.e., the gaussian process model) provides a flexible framework for modeling the underlying firing rates, and the parametric component (i.e., the copula model) allows us to make inferences regarding both contemporaneous and lagged relationships among neurons. Using the copula model, we construct multivariate probabilistic models by separating the modeling of univariate marginal distributions from the modeling of a dependence structure among variables. Our method is easy to implement using a computationally efficient sampling algorithm that can be easily extended to high-dimensional problems. Using simulated data, we show that our approach could correctly capture temporal dependencies in firing rates and identify synchronous neurons. We also apply our model to spike train data obtained from prefrontal cortical areas.
我们提出了一种可扩展的半参数贝叶斯模型,通过检测多个神经元随时间的共同放电(可能存在一定延迟时间)模式来捕捉它们之间的依赖性。在对时间进行离散化处理后,使得每个时间间隔内最多有一个尖峰,然后使用具有高斯过程先验的连续潜在变量的逻辑函数对每个神经元产生的1(尖峰)和0(静息)序列进行建模。对于多个神经元,使用参数化的copula模型将相应的边际分布与其联合概率分布耦合起来。我们方法的优点如下。非参数部分(即高斯过程模型)为模拟潜在的放电率提供了一个灵活的框架,而参数部分(即copula模型)使我们能够对神经元之间的同期和滞后关系进行推断。使用copula模型,我们通过将单变量边际分布的建模与变量之间依赖结构的建模分开,构建多变量概率模型。我们的方法使用一种计算效率高的采样算法很容易实现,并且可以很容易地扩展到高维问题。通过模拟数据,我们表明我们的方法能够正确捕捉放电率中的时间依赖性并识别同步神经元。我们还将我们的模型应用于从前额叶皮层区域获得的尖峰序列数据。