Suppr超能文献

一种用于刻画决策过程中跨神经元相互作用的动态贝叶斯模型。

A Dynamic Bayesian Model for Characterizing Cross-Neuronal Interactions During Decision-Making.

作者信息

Zhou Bo, Moorman David E, Behseta Sam, Ombao Hernando, Shahbaba Babak

机构信息

Department of Statistics, University of California, Irvine, CA.

出版信息

J Am Stat Assoc. 2016;111(514):459-471. doi: 10.1080/01621459.2015.1116988. Epub 2016 Aug 18.

Abstract

The goal of this paper is to develop a novel statistical model for studying cross-neuronal spike train interactions during decision making. For an individual to successfully complete the task of decision-making, a number of temporally-organized events must occur: stimuli must be detected, potential outcomes must be evaluated, behaviors must be executed or inhibited, and outcomes (such as reward or no-reward) must be experienced. Due to the complexity of this process, it is likely the case that decision-making is encoded by the temporally-precise interactions between large populations of neurons. Most existing statistical models, however, are inadequate for analyzing such a phenomenon because they provide only an aggregated measure of interactions over time. To address this considerable limitation, we propose a dynamic Bayesian model which captures the time-varying nature of neuronal activity (such as the time-varying strength of the interactions between neurons). The proposed method yielded results that reveal new insight into the dynamic nature of population coding in the prefrontal cortex during decision making. In our analysis, we note that while some neurons in the prefrontal cortex do not synchronize their firing activity until the presence of a reward, a different set of neurons synchronize their activity shortly after stimulus onset. These differentially synchronizing sub-populations of neurons suggests a continuum of population representation of the reward-seeking task. Secondly, our analyses also suggest that the degree of synchronization differs between the rewarded and non-rewarded conditions. Moreover, the proposed model is scalable to handle data on many simultaneously-recorded neurons and is applicable to analyzing other types of multivariate time series data with latent structure. Supplementary materials (including computer codes) for our paper are available online.

摘要

本文的目标是开发一种新颖的统计模型,用于研究决策过程中跨神经元的尖峰序列相互作用。一个人要成功完成决策任务,必须发生一系列按时间组织的事件:必须检测到刺激,必须评估潜在结果,必须执行或抑制行为,并且必须体验结果(例如奖励或无奖励)。由于这个过程的复杂性,决策很可能是由大量神经元之间时间精确的相互作用编码的。然而,大多数现有的统计模型不足以分析这种现象,因为它们只提供了随时间的相互作用的汇总测量。为了解决这一重大局限性,我们提出了一种动态贝叶斯模型,该模型捕捉神经元活动的时变性质(例如神经元之间相互作用的时变强度)。所提出的方法产生的结果揭示了对决策过程中前额叶皮质群体编码动态性质的新见解。在我们的分析中,我们注意到,虽然前额叶皮质中的一些神经元直到有奖励出现时才同步其放电活动,但另一组神经元在刺激开始后不久就同步其活动。这些不同同步的神经元亚群表明了寻求奖励任务的群体表征的连续性。其次,我们的分析还表明,奖励和无奖励条件下的同步程度不同。此外,所提出的模型具有可扩展性,能够处理许多同时记录的神经元的数据,并且适用于分析具有潜在结构的其他类型的多元时间序列数据。我们论文的补充材料(包括计算机代码)可在线获取。

相似文献

1
A Dynamic Bayesian Model for Characterizing Cross-Neuronal Interactions During Decision-Making.
J Am Stat Assoc. 2016;111(514):459-471. doi: 10.1080/01621459.2015.1116988. Epub 2016 Aug 18.
2
Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History.
J Neurosci. 2017 Feb 22;37(8):2010-2021. doi: 10.1523/JNEUROSCI.2951-16.2016. Epub 2017 Jan 23.
3
Reward-dependent learning in neuronal networks for planning and decision making.
Prog Brain Res. 2000;126:217-29. doi: 10.1016/S0079-6123(00)26016-0.
5
Differences in reward processing between putative cell types in primate prefrontal cortex.
PLoS One. 2017 Dec 19;12(12):e0189771. doi: 10.1371/journal.pone.0189771. eCollection 2017.
6
Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
Prog Brain Res. 2000;126:193-215. doi: 10.1016/S0079-6123(00)26015-9.
7
Neural representation of cost-benefit selections in rat anterior cingulate cortex in self-paced decision making.
Neurobiol Learn Mem. 2017 Mar;139:1-10. doi: 10.1016/j.nlm.2016.12.003. Epub 2016 Dec 2.
8
Neuronal mechanisms in prefrontal cortex underlying adaptive choice behavior.
Ann N Y Acad Sci. 2007 Dec;1121:447-60. doi: 10.1196/annals.1401.009. Epub 2007 Sep 10.
9
Synchronous Spike Patterns in Macaque Motor Cortex during an Instructed-Delay Reach-to-Grasp Task.
J Neurosci. 2016 Aug 10;36(32):8329-40. doi: 10.1523/JNEUROSCI.4375-15.2016.

引用本文的文献

2
Reconstructing neuronal circuitry from parallel spike trains.
Nat Commun. 2019 Oct 2;10(1):4468. doi: 10.1038/s41467-019-12225-2.

本文引用的文献

1
MODELING TEMPORAL GRADIENTS IN REGIONALLY AGGREGATED CALIFORNIA ASTHMA HOSPITALIZATION DATA.
Ann Appl Stat. 2013;7(1):154-176. doi: 10.1214/12-AOAS600. Epub 2013 Apr 9.
2
Prefrontal neurons encode context-based response execution and inhibition in reward seeking and extinction.
Proc Natl Acad Sci U S A. 2015 Jul 28;112(30):9472-7. doi: 10.1073/pnas.1507611112. Epub 2015 Jul 13.
3
Tools for probing local circuits: high-density silicon probes combined with optogenetics.
Neuron. 2015 Apr 8;86(1):92-105. doi: 10.1016/j.neuron.2015.01.028.
4
Evaluating dynamic bivariate correlations in resting-state fMRI: a comparison study and a new approach.
Neuroimage. 2014 Nov 1;101:531-46. doi: 10.1016/j.neuroimage.2014.06.052. Epub 2014 Jun 30.
5
A semiparametric Bayesian model for detecting synchrony among multiple neurons.
Neural Comput. 2014 Sep;26(9):2025-51. doi: 10.1162/NECO_a_00631. Epub 2014 Jun 12.
6
Detecting functional connectivity change points for single-subject fMRI data.
Front Comput Neurosci. 2013 Oct 30;7:143. doi: 10.3389/fncom.2013.00143. eCollection 2013.
7
Decision making as a window on cognition.
Neuron. 2013 Oct 30;80(3):791-806. doi: 10.1016/j.neuron.2013.10.047.
8
Diverse synchrony of firing reflects diverse cell-assembly coding in the prefrontal cortex.
J Physiol Paris. 2013 Dec;107(6):459-70. doi: 10.1016/j.jphysparis.2013.05.004. Epub 2013 Jun 4.
9
The importance of mixed selectivity in complex cognitive tasks.
Nature. 2013 May 30;497(7451):585-90. doi: 10.1038/nature12160. Epub 2013 May 19.
10
The sparseness of mixed selectivity neurons controls the generalization-discrimination trade-off.
J Neurosci. 2013 Feb 27;33(9):3844-56. doi: 10.1523/JNEUROSCI.2753-12.2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验