Suppr超能文献

玫瑰酶:一种合成纤维小体。

The rosettazyme: a synthetic cellulosome.

作者信息

Mitsuzawa Shigenobu, Kagawa Hiromi, Li Yifen, Chan Suzanne L, Paavola Chad D, Trent Jonathan D

机构信息

Biomolecular Engineering Department, University of California, Santa Cruz, CA 95064, USA.

出版信息

J Biotechnol. 2009 Aug 20;143(2):139-44. doi: 10.1016/j.jbiotec.2009.06.019. Epub 2009 Jun 24.

Abstract

Cellulose is an attractive feedstock for biofuel production because of its abundance, but the cellulose polymer is extremely stable and its constituent sugars are difficult to access. In nature, extracellular multi-enzyme complexes known as cellulosomes are among the most effective ways to transform cellulose to useable sugars. Cellulosomes consist of a diversity of secreted cellulases and other plant cell-wall degrading enzymes bound to a protein scaffold. These scaffold proteins have cohesin modules that bind conserved dockerin modules on the enzymes. It is thought that the localization of these diverse enzymes on the scaffold allows them to function synergistically. In order to understand and harness this synergy smaller, simplified cellulosomes have been constructed, expressed, and reconstituted using truncated cohesin-containing scaffolds. Here we show that an 18-subunit protein complex called a rosettasome can be genetically engineered to bind dockerin-containing enzymes and function like a cellulosome. Rosettasomes are thermostable, group II chaperonins from the hyperthermo-acidophilic archaeon Sulfolobus shibatae, which in the presence of ATP/Mg(2+) assemble into 18-subunit, double-ring structures. We fused a cohesin module from Clostridium thermocellum to a circular permutant of a rosettasome subunit, and we demonstrate that the cohesin-rosettasomes: (1) bind dockerin-containing endo- and exo-gluconases, (2) the bound enzymes have increased cellulose-degrading activity compared to their activity free in solution, and (3) this increased activity depends on the number and ratio of the bound glucanases. We call these engineered multi-enzyme structures rosettazymes.

摘要

纤维素因其丰富性而成为生物燃料生产的一种有吸引力的原料,但纤维素聚合物极其稳定,其组成糖难以获取。在自然界中,被称为纤维小体的细胞外多酶复合物是将纤维素转化为可用糖的最有效方法之一。纤维小体由多种分泌的纤维素酶和其他与蛋白质支架结合的植物细胞壁降解酶组成。这些支架蛋白具有与酶上保守的dockerin模块结合的黏连蛋白模块。据认为,这些不同的酶在支架上的定位使它们能够协同发挥作用。为了理解和利用这种协同作用,已经使用截短的含黏连蛋白支架构建、表达并重构了更小、更简化的纤维小体。在这里,我们表明一种名为玫瑰花结小体的18亚基蛋白质复合物可以通过基因工程改造来结合含dockerin的酶,并像纤维小体一样发挥作用。玫瑰花结小体是来自嗜热嗜酸古菌嗜热栖热硫化叶菌的热稳定II型伴侣蛋白,在ATP/Mg(2+)存在下组装成18亚基的双环结构。我们将来自热纤梭菌的黏连蛋白模块与玫瑰花结小体亚基的环状排列突变体融合,并且我们证明黏连蛋白 - 玫瑰花结小体:(1) 结合含dockerin的内切和外切葡聚糖酶,(2) 与溶液中游离的酶相比,结合的酶具有更高的纤维素降解活性,并且(3) 这种增加的活性取决于结合的葡聚糖酶的数量和比例。我们将这些工程化的多酶结构称为玫瑰花结酶。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验