Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA.
J Mol Biol. 2010 Mar 5;396(4):833-9. doi: 10.1016/j.jmb.2010.01.015. Epub 2010 Jan 11.
Cellulosomes are large, multienzyme, plant cell wall-degrading protein complexes found affixed to the surface of a variety of anaerobic microbes. The core of the cellulosome is a noncatalytic scaffoldin protein, which contains several type-I cohesin modules that bind type-I dockerin-containing enzymatic subunits, a cellulose-binding module, an X module, and a type-II dockerin that interacts with type-II cohesin-containing cell surface proteins. The unique arrangement of the enzymatic subunits in the cellulosome complex, made possible by the scaffoldin subunit, promotes enhanced substrate degradation relative to the enzymes free in solution. Despite representative high-resolution structures of all of the individual modules of the cellulosome, this mechanism of enzymatic synergy remains poorly understood. Consequently, a model of the entire cellulosome and a detailed picture of intermodular contacts will provide more detailed insight into cellulosome activity. Toward this goal, we have solved the structure of a multimodular heterodimeric complex from Clostridium thermocellum composed of the type-II cohesin module of the cell surface protein SdbA bound to a trimodular C-terminal fragment of the scaffoldin subunit CipA to a resolution of 1.95 A. The linker that connects the ninth type-I cohesin module and the X module has elevated temperature factors, reflecting an inherent flexibility within this region. Interestingly, a novel dimer interface was observed between CipA and a second, symmetry-related CipA molecule within the crystal structure, mediated by contacts between a type-I cohesin and an X module of a symmetry mate, resulting in two intertwined scaffoldins. Sedimentation velocity experiments confirmed that dimerization also occurs in solution. These observations support the intriguing possibility that individual cellulosomes can associate with one another via inter-scaffoldin interactions, which may play a role in the mechanism of action of the complex.
纤连蛋白体是一种大型的、多酶的、植物细胞壁降解蛋白复合物,存在于多种厌氧微生物的表面。纤连蛋白体的核心是一种非催化支架蛋白,它包含几个 I 型黏合模块,这些模块与含有 I 型 dockerin 的酶亚基结合、纤维素结合模块、X 模块和与含有 II 型 cohesin 的细胞表面蛋白相互作用的 II 型 dockerin。由于支架亚基的存在,纤连蛋白体复合物中酶亚基的独特排列方式促进了增强的底物降解,与游离在溶液中的酶相比,这种方式的降解效率更高。尽管纤连蛋白体的所有单个模块都有代表性的高分辨率结构,但这种酶协同作用的机制仍未得到很好的理解。因此,整个纤连蛋白体的模型和模块间相互作用的详细图片将提供更深入的纤连蛋白体活性的见解。为了实现这一目标,我们解决了来自热纤维梭菌的多模块杂二聚体复合物的结构,该复合物由细胞表面蛋白 SdbA 的 II 型黏合模块与支架亚基 CipA 的三模块 C 端片段组成,分辨率为 1.95 A。连接第九个 I 型黏合模块和 X 模块的连接子具有较高的温度因素,反映了该区域内的固有灵活性。有趣的是,在晶体结构中观察到了 CipA 与另一个对称相关的 CipA 分子之间的新的二聚体界面,由一个 I 型黏合和一个对称伴侣的 X 模块之间的接触介导,导致两个交织的支架。沉降速度实验证实二聚体也在溶液中发生。这些观察结果支持了一个有趣的可能性,即单个纤连蛋白体可以通过支架间的相互作用彼此关联,这可能在复合物的作用机制中发挥作用。