Suppr超能文献

揭示细胞外酶复合体组装过程中对酶的识别,而不依赖于黏附蛋白-附着蛋白的亲和力。

Unraveling enzyme discrimination during cellulosome assembly independent of cohesin-dockerin affinity.

机构信息

Aix-Marseille Université-CNRS, LCB UMR7283, IMM, Marseille, France.

出版信息

FEBS J. 2013 Nov;280(22):5764-79. doi: 10.1111/febs.12497. Epub 2013 Sep 10.

Abstract

Bacterial cellulosomes are generally believed to assemble at random, like those produced by Clostridium cellulolyticum. They are composed of one scaffolding protein bearing eight homologous type I cohesins that bind to any of the type I dockerins borne by the 62 cellulosomal subunits, thus generating highly heterogeneous complexes. In the present study, the heterogeneity and random assembly of the cellulosomes were evaluated with a simpler model: a miniscaffoldin containing three C. cellulolyticum cohesins and three cellulases of the same bacterium bearing the cognate dockerin (Cel5A, Cel48F, and Cel9G). Surprisingly, rather than the expected randomized integration of enzymes, the assembly of the minicellulosome generated only three distinct types of complex out of the 10 possible combinations, thus indicating preferential integration of enzymes upon binding to the scaffoldin. A hybrid scaffoldin that displays one cohesin from C. cellulolyticum and one from C. thermocellum, thus allowing sequential integration of enzymes, was exploited to further characterize this phenomenon. The initial binding of a given enzyme to the C. thermocellum cohesin was found to influence the type of enzyme that subsequently bound to the C. cellulolyticum cohesin. The preferential integration appears to be related to the length of the inter-cohesin linker. The data indicate that the binding of a cellulosomal enzyme to a cohesin has a direct influence on the dockerin-bearing proteins that will subsequently interact with adjacent cohesins. Thus, despite the general lack of specificity of the cohesin-dockerin interaction within a given species and type, bacterial cellulosomes are not necessarily assembled at random.

摘要

细菌纤维小体通常被认为是随机组装的,就像纤维素分解梭菌产生的那样。它们由一个支架蛋白组成,该蛋白带有 8 个同源的 I 型结构域,这些结构域与 62 个纤维小体亚基上携带的任何 I 型 dockerin 结合,从而产生高度异质的复合物。在本研究中,使用更简单的模型评估了纤维小体的异质性和随机组装:一个含有三个 C. cellulolyticum 结构域和三个来自同一细菌的纤维素酶的小型支架蛋白,这些纤维素酶都带有同源的 dockerin(Cel5A、Cel48F 和 Cel9G)。令人惊讶的是,组装小型纤维小体并没有产生预期的随机酶整合,而是只产生了 10 种可能组合中的三种不同类型的复合物,这表明在与支架蛋白结合时,酶优先整合。一种展示来自 C. cellulolyticum 的一个结构域和来自 C. thermocellum 的一个结构域的混合支架蛋白,从而允许酶的顺序整合,被用来进一步表征这种现象。发现给定酶与 C. thermocellum 结构域的初始结合会影响随后与 C. cellulolyticum 结构域结合的酶的类型。这种优先整合似乎与结构域之间的连接长度有关。数据表明,细胞小体酶与结构域的结合直接影响随后与相邻结构域相互作用的带有 dockerin 的蛋白质。因此,尽管在给定物种和类型内结构域与 dockerin 的相互作用通常缺乏特异性,但细菌纤维小体不一定是随机组装的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验