Naranuntarat Amornrat, Jensen Laran T, Pazicni Samuel, Penner-Hahn James E, Culotta Valeria C
Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA.
J Biol Chem. 2009 Aug 21;284(34):22633-40. doi: 10.1074/jbc.M109.026773. Epub 2009 Jun 27.
Superoxide dismutase 2 (SOD2) is one of the rare mitochondrial enzymes evolved to use manganese as a cofactor over the more abundant element iron. Although mitochondrial iron does not normally bind SOD2, iron will misincorporate into Saccharomyces cerevisiae Sod2p when cells are starved for manganese or when mitochondrial iron homeostasis is disrupted by mutations in yeast grx5, ssq1, and mtm1. We report here that such changes in mitochondrial manganese and iron similarly affect cofactor selection in a heterologously expressed Escherichia coli Mn-SOD, but not a highly homologous Fe-SOD. By x-ray absorption near edge structure and extended x-ray absorption fine structure analyses of isolated mitochondria, we find that misincorporation of iron into yeast Sod2p does not correlate with significant changes in the average oxidation state or coordination chemistry of bulk mitochondrial iron. Instead, small changes in mitochondrial iron are likely to promote iron-SOD2 interactions. Iron binds Sod2p in yeast mutants blocking late stages of iron-sulfur cluster biogenesis (grx5, ssq1, and atm1), but not in mutants defective in the upstream Isu proteins that serve as scaffolds for iron-sulfur biosynthesis. In fact, we observed a requirement for the Isu proteins in iron inactivation of yeast Sod2p. Sod2p activity was restored in mtm1 and grx5 mutants by depleting cells of Isu proteins or using a dominant negative Isu1p predicted to stabilize iron binding to Isu1p. In all cases where disruptions in iron homeostasis inactivated Sod2p, we observed an increase in mitochondrial Isu proteins. These studies indicate that the Isu proteins and the iron-sulfur pathway can donate iron to Sod2p.
超氧化物歧化酶2(SOD2)是一种罕见的线粒体酶,它进化为利用锰作为辅因子,而非更丰富的元素铁。虽然线粒体铁通常不与SOD2结合,但当细胞缺乏锰时,或者当酵母grx5、ssq1和mtm1中的突变破坏线粒体铁稳态时,铁会错误地掺入酿酒酵母Sod2p中。我们在此报告,线粒体锰和铁的此类变化同样会影响异源表达的大肠杆菌锰超氧化物歧化酶中的辅因子选择,但不会影响高度同源的铁超氧化物歧化酶。通过对分离的线粒体进行x射线吸收近边结构和扩展x射线吸收精细结构分析,我们发现铁错误掺入酵母Sod2p与线粒体整体铁的平均氧化态或配位化学的显著变化无关。相反,线粒体铁的微小变化可能会促进铁与SOD2的相互作用。在阻断铁硫簇生物合成后期阶段的酵母突变体(grx5、ssq1和atm1)中,铁与Sod2p结合,但在作为铁硫生物合成支架的上游Isu蛋白有缺陷的突变体中则不然。事实上,我们观察到酵母Sod2p的铁失活需要Isu蛋白。通过耗尽细胞中的Isu蛋白或使用预测可稳定铁与Isu1p结合的显性负性Isu1p,mtm1和grx5突变体中的Sod2p活性得以恢复。在所有铁稳态破坏使Sod2p失活的情况下,我们都观察到线粒体Isu蛋白增加。这些研究表明,Isu蛋白和铁硫途径可以将铁提供给Sod2p。