Yang Mei, Cobine Paul A, Molik Sabine, Naranuntarat Amornrat, Lill Roland, Winge Dennis R, Culotta Valeria C
Division of Toxicological Sciences, Department of Environmental Health Sciences, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
EMBO J. 2006 Apr 19;25(8):1775-83. doi: 10.1038/sj.emboj.7601064. Epub 2006 Apr 6.
Many metalloproteins have the capacity to bind diverse metals, but in living cells connect only with their cognate metal cofactor. In eukaryotes, this metal specificity can be achieved through metal-specific metallochaperone proteins. Herein, we describe a mechanism whereby Saccharomyces cerevisiae manganese superoxide dismutase (SOD2) preferentially binds manganese over iron based on the differential bioavailability of these ions within mitochondria. The bulk of mitochondrial iron is normally unavailable to SOD2, but when mitochondrial iron homeostasis is disrupted, for example, by mutations in S. cerevisiae mtm1, ssq1 and grx5, iron accumulates in a reactive form that potently competes with manganese for binding to SOD2, inactivating the enzyme. Studies in mtm1 mutants indicate that iron inactivation of SOD2 involves the Mrs3p/Mrs4p mitochondrial carriers and iron-binding frataxin (Yfh1p). A small pool of SOD2-reactive iron also exists under normal iron homeostasis conditions and binds SOD2 when mitochondrial manganese is low. The ability to control this reactive pool of iron is critical to maintaining SOD2 activity and has important potential implications for oxidative stress in disorders of iron overload.
许多金属蛋白能够结合多种金属,但在活细胞中仅与它们对应的金属辅因子结合。在真核生物中,这种金属特异性可通过金属特异性金属伴侣蛋白来实现。在此,我们描述了一种机制,即酿酒酵母锰超氧化物歧化酶(SOD2)基于线粒体中这些离子的生物可利用性差异,优先结合锰而非铁。线粒体中的大部分铁通常无法被SOD2利用,但当线粒体铁稳态被破坏时,例如酿酒酵母mtm1、ssq1和grx5发生突变时,铁会以一种反应性形式积累,这种形式会与锰强烈竞争与SOD2的结合,从而使该酶失活。对mtm1突变体的研究表明,SOD2的铁失活涉及Mrs3p/Mrs4p线粒体载体和铁结合蛋白(Yfh1p)。在正常铁稳态条件下也存在一小部分具有反应性的SOD2结合铁,当线粒体锰含量低时,它会与SOD2结合。控制这一反应性铁池的能力对于维持SOD2活性至关重要,并且对铁过载疾病中的氧化应激具有重要的潜在影响。