Bennett Bryson D, Kimball Elizabeth H, Gao Melissa, Osterhout Robin, Van Dien Stephen J, Rabinowitz Joshua D
Department of Chemistry and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA.
Nat Chem Biol. 2009 Aug;5(8):593-9. doi: 10.1038/nchembio.186. Epub 2009 Jun 28.
Absolute metabolite concentrations are critical to a quantitative understanding of cellular metabolism, as concentrations impact both the free energies and rates of metabolic reactions. Here we use LC-MS/MS to quantify more than 100 metabolite concentrations in aerobic, exponentially growing Escherichia coli with glucose, glycerol or acetate as the carbon source. The total observed intracellular metabolite pool was approximately 300 mM. A small number of metabolites dominate the metabolome on a molar basis, with glutamate being the most abundant. Metabolite concentration exceeds K(m) for most substrate-enzyme pairs. An exception is lower glycolysis, where concentrations of intermediates are near the K(m) of their consuming enzymes and all reactions are near equilibrium. This may facilitate efficient flux reversibility given thermodynamic and osmotic constraints. The data and analyses presented here highlight the ability to identify organizing metabolic principles from systems-level absolute metabolite concentration data.
绝对代谢物浓度对于定量理解细胞代谢至关重要,因为浓度会影响代谢反应的自由能和速率。在此,我们使用液相色谱-串联质谱法(LC-MS/MS)对以葡萄糖、甘油或乙酸盐为碳源、处于有氧指数生长期的大肠杆菌中100多种代谢物浓度进行定量。观察到的细胞内代谢物总池约为300 mM。从摩尔基础来看,少数代谢物在代谢组中占主导地位,其中谷氨酸含量最为丰富。对于大多数底物-酶对而言,代谢物浓度超过了米氏常数(K(m))。糖酵解下游是个例外,其中间产物浓度接近其消耗酶的米氏常数,且所有反应都接近平衡。在热力学和渗透限制条件下,这可能有助于实现高效的通量可逆性。本文提供的数据和分析突出了从系统水平的绝对代谢物浓度数据中识别组织代谢原理的能力。