Suppr超能文献

迈向合成基因组的自动化工程。

Towards the automated engineering of a synthetic genome.

作者信息

Carrera Javier, Rodrigo Guillermo, Jaramillo Alfonso

机构信息

Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-UPV, 46022 València, Spain.

出版信息

Mol Biosyst. 2009 Jul;5(7):733-43. doi: 10.1039/b904400k. Epub 2009 May 28.

Abstract

The development of the technology to synthesize new genomes and to introduce them into hosts with inactivated wild-type chromosome opens the door to new horizons in synthetic biology. Here it is of outmost importance to harness the ability of using computational design to predict and optimize a synthetic genome before attempting its synthesis. The methodology to computationally design a genome is based on an optimization that computationally mimics genome evolution. The biggest bottleneck lies on the use of an appropriate fitness function. This fitness function, usually cell growth, relies on the ability to quantitatively model the biochemical networks of the cell at the genome scale using parameters inferred from high-throughput data. Computational methods integrating such models in a common multilayer design platform can be used to automatically engineer synthetic genomes under physiological specifications. We describe the current state-of-the-art on automated methods for engineering or re-engineering synthetic genomes. We restrict ourselves to global models of metabolism, transcription and DNA structure. Although we are still far from the de novo computational genome design, it is important to collect all relevant work towards this goal. Finally, we discuss future perspectives about the practicability of an automated methodology for such computational design of synthetic genomes.

摘要

合成新基因组并将其导入野生型染色体已失活的宿主中的技术发展,为合成生物学开启了新的视野。在此,在尝试合成之前利用计算设计的能力来预测和优化合成基因组至关重要。计算设计基因组的方法基于一种优化,该优化在计算上模拟基因组进化。最大的瓶颈在于使用合适的适应度函数。这种适应度函数通常是细胞生长,它依赖于使用从高通量数据推断出的参数在基因组规模上对细胞生化网络进行定量建模的能力。将此类模型集成到通用多层设计平台中的计算方法,可用于在生理规格下自动设计合成基因组。我们描述了目前用于设计或重新设计合成基因组的自动化方法的最新进展。我们将自己限制在代谢、转录和DNA结构的全局模型上。尽管我们离从头计算基因组设计仍相距甚远,但朝着这一目标收集所有相关工作很重要。最后,我们讨论了关于这种合成基因组计算设计自动化方法实用性的未来展望。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验