Suppr超能文献

基于从头开始反向工程的基因组规模调控网络方法的综合评估。

A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks.

机构信息

Center for Health Informatics and Bioinformatics, New York University School of Medicine, New York, NY 10016, USA.

出版信息

Genomics. 2011 Jan;97(1):7-18. doi: 10.1016/j.ygeno.2010.10.003. Epub 2010 Oct 14.

Abstract

De-novo reverse-engineering of genome-scale regulatory networks is an increasingly important objective for biological and translational research. While many methods have been recently developed for this task, their absolute and relative performance remains poorly understood. The present study conducts a rigorous performance assessment of 32 computational methods/variants for de-novo reverse-engineering of genome-scale regulatory networks by benchmarking these methods in 15 high-quality datasets and gold-standards of experimentally verified mechanistic knowledge. The results of this study show that some methods need to be substantially improved upon, while others should be used routinely. Our results also demonstrate that several univariate methods provide a "gatekeeper" performance threshold that should be applied when method developers assess the performance of their novel multivariate algorithms. Finally, the results of this study can be used to show practical utility and to establish guidelines for everyday use of reverse-engineering algorithms, aiming towards creation of automated data-analysis protocols and software systems.

摘要

从头重建基因组规模的调控网络是生物学和转化研究中越来越重要的目标。虽然最近已经开发了许多用于此任务的方法,但它们的绝对和相对性能仍了解甚少。本研究通过在 15 个高质量数据集和经过实验验证的机制知识的金标准中对这些方法进行基准测试,对 32 种用于从头重建基因组规模调控网络的计算方法/变体进行了严格的性能评估。这项研究的结果表明,一些方法需要进行实质性的改进,而另一些方法则应该常规使用。我们的结果还表明,一些单变量方法提供了一个“把关者”性能阈值,方法开发人员在评估其新的多变量算法的性能时应该应用该阈值。最后,这项研究的结果可用于展示实际用途,并为日常使用反向工程算法建立指南,旨在创建自动化数据分析协议和软件系统。

相似文献

1
A comprehensive assessment of methods for de-novo reverse-engineering of genome-scale regulatory networks.
Genomics. 2011 Jan;97(1):7-18. doi: 10.1016/j.ygeno.2010.10.003. Epub 2010 Oct 14.
2
De-novo learning of genome-scale regulatory networks in S. cerevisiae.
PLoS One. 2014 Sep 12;9(9):e106479. doi: 10.1371/journal.pone.0106479. eCollection 2014.
3
Benchmarking regulatory network reconstruction with GRENDEL.
Bioinformatics. 2009 Mar 15;25(6):801-7. doi: 10.1093/bioinformatics/btp068. Epub 2009 Feb 2.
4
CMIP: a software package capable of reconstructing genome-wide regulatory networks using gene expression data.
BMC Bioinformatics. 2016 Dec 23;17(Suppl 17):535. doi: 10.1186/s12859-016-1324-y.
7
Inferring gene networks: dream or nightmare?
Ann N Y Acad Sci. 2009 Mar;1158:287-301. doi: 10.1111/j.1749-6632.2008.04100.x.
8
De novo reconstruction of gene regulatory networks from time series data, an approach based on formal methods.
Methods. 2014 Oct 1;69(3):298-305. doi: 10.1016/j.ymeth.2014.06.005. Epub 2014 Jun 21.
10
Harnessing diversity towards the reconstructing of large scale gene regulatory networks.
PLoS Comput Biol. 2013;9(11):e1003361. doi: 10.1371/journal.pcbi.1003361. Epub 2013 Nov 21.

引用本文的文献

1
Prognostic value and co-expression patterns of metabolic pathways in cancers.
BMC Genomics. 2020 Dec 29;21(Suppl 11):860. doi: 10.1186/s12864-020-07251-0.
2
Review of Causal Discovery Methods Based on Graphical Models.
Front Genet. 2019 Jun 4;10:524. doi: 10.3389/fgene.2019.00524. eCollection 2019.
3
IncGraph: Incremental graphlet counting for topology optimisation.
PLoS One. 2018 Apr 26;13(4):e0195997. doi: 10.1371/journal.pone.0195997. eCollection 2018.
4
Exploring candidate biological functions by Boolean Function Networks for Saccharomyces cerevisiae.
PLoS One. 2017 Oct 5;12(10):e0185475. doi: 10.1371/journal.pone.0185475. eCollection 2017.
5
Adaptive Multiview Nonnegative Matrix Factorization Algorithm for Integration of Multimodal Biomedical Data.
Cancer Inform. 2017 Aug 18;16:1176935117725727. doi: 10.1177/1176935117725727. eCollection 2017.
6
Machine learning methods to predict child posttraumatic stress: a proof of concept study.
BMC Psychiatry. 2017 Jul 10;17(1):223. doi: 10.1186/s12888-017-1384-1.
7
A novel mutual information-based Boolean network inference method from time-series gene expression data.
PLoS One. 2017 Feb 8;12(2):e0171097. doi: 10.1371/journal.pone.0171097. eCollection 2017.
8
Network inference from multimodal data: A review of approaches from infectious disease transmission.
J Biomed Inform. 2016 Dec;64:44-54. doi: 10.1016/j.jbi.2016.09.004. Epub 2016 Sep 6.
9
Computational Methods for Unraveling Temporal Brain Connectivity Data.
AMIA Annu Symp Proc. 2015 Nov 5;2015:2043-52. eCollection 2015.
10
Netter: re-ranking gene network inference predictions using structural network properties.
BMC Bioinformatics. 2016 Feb 9;17:76. doi: 10.1186/s12859-016-0913-0.

本文引用的文献

1
Analysis and computational dissection of molecular signature multiplicity.
PLoS Comput Biol. 2010 May 20;6(5):e1000790. doi: 10.1371/journal.pcbi.1000790.
2
Revealing strengths and weaknesses of methods for gene network inference.
Proc Natl Acad Sci U S A. 2010 Apr 6;107(14):6286-91. doi: 10.1073/pnas.0913357107. Epub 2010 Mar 22.
3
Towards a rigorous assessment of systems biology models: the DREAM3 challenges.
PLoS One. 2010 Feb 23;5(2):e9202. doi: 10.1371/journal.pone.0009202.
4
Towards the automated engineering of a synthetic genome.
Mol Biosyst. 2009 Jul;5(7):733-43. doi: 10.1039/b904400k. Epub 2009 May 28.
5
The impact of incomplete knowledge on evaluation: an experimental benchmark for protein function prediction.
Bioinformatics. 2009 Sep 15;25(18):2404-10. doi: 10.1093/bioinformatics/btp397. Epub 2009 Jun 26.
6
Reverse engineering of gene regulatory networks: a comparative study.
EURASIP J Bioinform Syst Biol. 2009;2009(1):617281. doi: 10.1155/2009/617281. Epub 2009 Jun 11.
7
Inference of regulatory gene interactions from expression data using three-way mutual information.
Ann N Y Acad Sci. 2009 Mar;1158:302-13. doi: 10.1111/j.1749-6632.2008.03757.x.
8
Lessons from the DREAM2 Challenges.
Ann N Y Acad Sci. 2009 Mar;1158:159-95. doi: 10.1111/j.1749-6632.2009.04497.x.
10
Reverse engineering molecular regulatory networks from microarray data with qp-graphs.
J Comput Biol. 2009 Feb;16(2):213-27. doi: 10.1089/cmb.2008.08TT.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验