Suppr超能文献

提高低水平量子化学计算吸收能量的准确性:遗传算法和神经网络方法。

Improving the accuracy of low level quantum chemical calculation for absorption energies: the genetic algorithm and neural network approach.

作者信息

Gao Ting, Shi Li-Li, Li Hai-Bin, Zhao Shan-Shan, Li Hui, Sun Shi-Ling, Su Zhong-Min, Lu Ying-Hua

机构信息

Institute of Functional Material Chemistry, Northeast Normal University, Changchun, Jilin, China.

出版信息

Phys Chem Chem Phys. 2009 Jul 7;11(25):5124-9. doi: 10.1039/b812492b. Epub 2009 Mar 23.

Abstract

The combination of genetic algorithm and back-propagation neural network correction approaches (GABP) has successfully improved the calculation accuracy of absorption energies. In this paper, the absorption energies of 160 organic molecules are corrected to test this method. Firstly, the GABP1 is introduced to determine the quantitative relationship between the experimental results and calculations obtained by using quantum chemical methods. After GABP1 correction, the root-mean-square (RMS) deviations of the calculated absorption energies reduce from 0.32, 0.95 and 0.46 eV to 0.14, 0.19 and 0.18 eV for B3LYP/6-31G(d), B3LYP/STO-3G and ZINDO methods, respectively. The corrected results of B3LYP/6-31G(d)-GABP1 are in good agreement with experimental results. Then, the GABP2 is introduced to determine the quantitative relationship between the results of B3LYP/6-31G(d)-GABP1 method and calculations of the low accuracy methods (B3LYP/STO-3G and ZINDO). After GABP2 correction, the RMS deviations of the calculated absorption energies reduce to 0.20 and 0.19 eV for B3LYP/STO-3G and ZINDO methods, respectively. The results show that the RMS deviations after GABP1 and GABP2 correction are similar for B3LYP/STO-3G and ZINDO methods. Thus, the B3LYP/6-31G(d)-GABP1 is a better method to predict absorption energies and can be used as the approximation of experimental results where the experimental results are unknown or uncertain by experimental method. This method may be used for predicting absorption energies of larger organic molecules that are unavailable by experimental methods and by high-accuracy theoretical methods with larger basis sets. The performance of this method was demonstrated by application to the absorption energy of the aldehyde carbazole precursor.

摘要

遗传算法与反向传播神经网络校正方法(GABP)相结合成功提高了吸收能的计算精度。本文对160个有机分子的吸收能进行校正以测试该方法。首先,引入GABP1来确定实验结果与使用量子化学方法获得的计算结果之间的定量关系。经过GABP1校正后,对于B3LYP/6 - 31G(d)、B3LYP/STO - 3G和ZINDO方法,计算得到的吸收能的均方根(RMS)偏差分别从0.32、0.95和0.46 eV降至0.14、0.19和0.18 eV。B3LYP/6 - 31G(d)-GABP1的校正结果与实验结果吻合良好。然后,引入GABP2来确定B3LYP/6 - 31G(d)-GABP1方法的结果与低精度方法(B3LYP/STO - 3G和ZINDO)的计算结果之间的定量关系。经过GABP2校正后,对于B3LYP/STO - 3G和ZINDO方法,计算得到的吸收能的RMS偏差分别降至0.20和0.19 eV。结果表明,对于B3LYP/STO - 3G和ZINDO方法,GABP1和GABP2校正后的RMS偏差相似。因此,B3LYP/6 - 31G(d)-GABP1是预测吸收能的较好方法,在实验结果未知或通过实验方法不确定的情况下可作为实验结果的近似值。该方法可用于预测实验方法和具有更大基组的高精度理论方法无法获得的较大有机分子的吸收能。通过将该方法应用于醛基咔唑前体的吸收能证明了其性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验