Suppr超能文献

用于探测平衡涨落的基组效应以及从头算和密度泛函理论方法性能的比较。

Comparison of basis set effects and the performance of ab initio and DFT methods for probing equilibrium fluctuations.

作者信息

Walker Ross C, Mercer Ian P, Gould Ian R, Klug David R

机构信息

Biophysics and Biological Chemistry Group, Department of Chemistry, Imperial College London, London, UK.

出版信息

J Comput Chem. 2007 Jan 30;28(2):478-90. doi: 10.1002/jcc.20559.

Abstract

The electronic absorption and emission spectra of large molecules reflect the extent and timescale of electron-vibration coupling and therefore the extent and timescale of relaxation/reorganization in response to a perturbation. In this paper, we present a comparison of the calculated absorption and emission spectra of NADH in liver alcohol dehydrogenase (LADH), using quantum mechanical/molecular mechanical methods, in which we vary the QM component. Specifically, we have looked at the influence of basis set (STO-3G, 3-21G*, 6-31G*, CC-pVDZ, and 6-311G**), as well as the influence of applying the DFT TD-B3LYP and ab initio TD-HF and CIS methods to the calculation of absorption/emission spectra and the reorganization energy (Stokes shift). The ab initio TD-HF and CIS methods reproduce the experimentally determined Stokes shift and spectral profiles to a high level of agreement, while the TD-B3LYP method significantly underestimates the Stokes shift, by 45%. We comment on the origin of this problem and suggest that ab initio methods may be naturally more suited to predicting molecular behavior away from equilibrium geometries.

摘要

大分子的电子吸收光谱和发射光谱反映了电子 - 振动耦合的程度和时间尺度,因此也反映了响应微扰时弛豫/重组的程度和时间尺度。在本文中,我们使用量子力学/分子力学方法,通过改变量子力学(QM)部分,比较了肝醇脱氢酶(LADH)中烟酰胺腺嘌呤二核苷酸(NADH)的计算吸收光谱和发射光谱。具体而言,我们研究了基组(STO - 3G、3 - 21G*、6 - 31G*、cc - pVDZ和6 - 311G**)的影响,以及应用密度泛函理论(DFT)的含时B3LYP方法、从头算含时HF和CIS方法对吸收/发射光谱和重组能(斯托克斯位移)计算的影响。从头算含时HF和CIS方法能高度吻合地重现实验测定的斯托克斯位移和光谱轮廓,而含时B3LYP方法则显著低估了斯托克斯位移,低估幅度达45%。我们对该问题的根源进行了评论,并表明从头算方法可能天然更适合预测远离平衡几何结构的分子行为。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验