Suppr超能文献

皮层第4层递归兴奋性微回路中的胆碱能过滤

Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4.

作者信息

Eggermann Emmanuel, Feldmeyer Dirk

机构信息

Institute of Neuroscience and Medicine, INM-2, Research Centre Juelich, D-52425 Juelich, Germany.

出版信息

Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11753-8. doi: 10.1073/pnas.0810062106. Epub 2009 Jun 29.

Abstract

Neocortical acetylcholine (ACH) release is known to enhance signal processing by increasing the amplitude and signal-to-noise ratio (SNR) of sensory responses. It is widely accepted that the larger sensory responses are caused by a persistent increase in the excitability of all cortical excitatory neurons. Here, contrary to this concept, we show that ACH persistently inhibits layer 4 (L4) spiny neurons, the main targets of thalamocortical inputs. Using whole-cell recordings in slices of rat primary somatosensory cortex, we demonstrate that this inhibition is specific to L4 and contrasts with the ACH-induced persistent excitation of pyramidal cells in L2/3 and L5. We find that this inhibition is induced by postsynaptic M(4)-muscarinic ACH receptors and is mediated by the opening of inwardly rectifying potassium (K(ir)) channels. Pair recordings of L4 spiny neurons show that ACH reduces synaptic release in the L4 recurrent microcircuit. We conclude that ACH has a differential layer-specific effect that results in a filtering of weak sensory inputs in the L4 recurrent excitatory microcircuit and a subsequent amplification of relevant inputs in L2/3 and L5 excitatory microcircuits. This layer-specific effect may contribute to improve cortical SNR.

摘要

已知新皮质乙酰胆碱(ACH)释放可通过增加感觉反应的幅度和信噪比(SNR)来增强信号处理。人们普遍认为,较大的感觉反应是由所有皮质兴奋性神经元兴奋性的持续增加引起的。在此,与这一概念相反,我们表明ACH持续抑制第4层(L4)棘状神经元,即丘脑皮质输入的主要靶标。通过在大鼠初级体感皮层切片中进行全细胞记录,我们证明这种抑制作用对L4具有特异性,并且与ACH诱导的L2/3和L5中锥体细胞的持续兴奋形成对比。我们发现这种抑制作用是由突触后M(4)-毒蕈碱型ACH受体诱导的,并由内向整流钾(K(ir))通道的开放介导。L4棘状神经元的配对记录显示,ACH减少了L4递归微回路中的突触释放。我们得出结论,ACH具有不同的层特异性效应,导致L4递归兴奋性微回路中弱感觉输入的过滤以及随后L2/3和L5兴奋性微回路中相关输入的放大。这种层特异性效应可能有助于提高皮质信噪比。

相似文献

1
Cholinergic filtering in the recurrent excitatory microcircuit of cortical layer 4.
Proc Natl Acad Sci U S A. 2009 Jul 14;106(28):11753-8. doi: 10.1073/pnas.0810062106. Epub 2009 Jun 29.
2
Synaptic Release of Acetylcholine Rapidly Suppresses Cortical Activity by Recruiting Muscarinic Receptors in Layer 4.
J Neurosci. 2018 Jun 6;38(23):5338-5350. doi: 10.1523/JNEUROSCI.0566-18.2018. Epub 2018 May 8.
3
Cell-Type Specific Neuromodulation of Excitatory and Inhibitory Neurons Muscarinic Acetylcholine Receptors in Layer 4 of Rat Barrel Cortex.
Front Neural Circuits. 2022 Feb 18;16:843025. doi: 10.3389/fncir.2022.843025. eCollection 2022.
5
Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine.
Neuroscience. 2009 Sep 29;163(1):430-41. doi: 10.1016/j.neuroscience.2009.06.026. Epub 2009 Jun 13.
8
Cholinergic-mediated response enhancement in barrel cortex layer V pyramidal neurons.
J Neurophysiol. 2012 Sep;108(6):1656-68. doi: 10.1152/jn.00156.2012. Epub 2012 Jun 20.
9
Cholinergic excitation in mouse primary vs. associative cortex: region-specific magnitude and receptor balance.
Eur J Neurosci. 2014 Aug;40(4):2608-18. doi: 10.1111/ejn.12622. Epub 2014 May 15.

引用本文的文献

2
A Developmental Switch in Cholinergic Mechanisms of Modulation in the Medial Nucleus of the Trapezoid Body.
J Neurosci. 2024 Feb 21;44(8):e0356232023. doi: 10.1523/JNEUROSCI.0356-23.2023.
3
Acetylcholine modulates the precision of prediction error in the auditory cortex.
Elife. 2024 Jan 19;12:RP91475. doi: 10.7554/eLife.91475.
4
Cholinergic Activation of Corticofugal Circuits in the Adult Mouse Prefrontal Cortex.
J Neurosci. 2024 Jan 17;44(3):e1388232023. doi: 10.1523/JNEUROSCI.1388-23.2023.
6
Signatures of somatosensory cortical dysfunction in Alzheimer's disease and HIV-associated neurocognitive disorder.
Brain Commun. 2022 Jun 23;4(4):fcac169. doi: 10.1093/braincomms/fcac169. eCollection 2022.
7
Cell-Type Specific Neuromodulation of Excitatory and Inhibitory Neurons Muscarinic Acetylcholine Receptors in Layer 4 of Rat Barrel Cortex.
Front Neural Circuits. 2022 Feb 18;16:843025. doi: 10.3389/fncir.2022.843025. eCollection 2022.
9
Cell-type-specific nicotinic input disinhibits mouse barrel cortex during active sensing.
Neuron. 2021 Mar 3;109(5):778-787.e3. doi: 10.1016/j.neuron.2020.12.018. Epub 2021 Jan 19.
10
Effects of Cortical Cooling on Activity Across Layers of the Rat Barrel Cortex.
Front Syst Neurosci. 2020 Aug 4;14:52. doi: 10.3389/fnsys.2020.00052. eCollection 2020.

本文引用的文献

1
Prefrontal acetylcholine release controls cue detection on multiple timescales.
Neuron. 2007 Oct 4;56(1):141-54. doi: 10.1016/j.neuron.2007.08.025.
3
Layer- and cell-type-specific suprathreshold stimulus representation in rat primary somatosensory cortex.
J Physiol. 2007 May 15;581(Pt 1):139-54. doi: 10.1113/jphysiol.2006.124321. Epub 2007 Feb 22.
4
Heterogeneity of phasic cholinergic signaling in neocortical neurons.
J Neurophysiol. 2007 Mar;97(3):2215-29. doi: 10.1152/jn.00493.2006. Epub 2006 Nov 22.
5
Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system.
Annu Rev Pharmacol Toxicol. 2007;47:699-729. doi: 10.1146/annurev.pharmtox.47.120505.105214.
7
Cortex is driven by weak but synchronously active thalamocortical synapses.
Science. 2006 Jun 16;312(5780):1622-7. doi: 10.1126/science.1124593.
8
Correlating whisker behavior with membrane potential in barrel cortex of awake mice.
Nat Neurosci. 2006 May;9(5):608-10. doi: 10.1038/nn1690. Epub 2006 Apr 16.
9
How silent is the brain: is there a "dark matter" problem in neuroscience?
J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2006 Aug;192(8):777-84. doi: 10.1007/s00359-006-0117-6. Epub 2006 Mar 21.
10
Synaptic bombardment modulates muscarinic effects in forelimb motor cortex.
J Neurosci. 2006 Feb 22;26(8):2215-26. doi: 10.1523/JNEUROSCI.4310-05.2006.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验