Suppr超能文献

格鲁内贝格神经节嗅觉子系统采用环鸟苷酸信号通路。

Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway.

作者信息

Liu Cambrian Y, Fraser Scott E, Koos David S

机构信息

Biological Imaging Center, California Institute of Technology, Pasadena, California 91125, USA.

出版信息

J Comp Neurol. 2009 Sep 1;516(1):36-48. doi: 10.1002/cne.22096.

Abstract

The mammalian olfactory sense employs several olfactory subsystems situated at characteristic locations in the nasal cavity to detect and report on different classes of odors. These olfactory subsystems use different neuronal signal transduction pathways, receptor expression repertoires, and axonal projection targets. The Grueneberg ganglion (GG) is a newly appreciated olfactory subsystem with receptor neurons located just inside of the nostrils that project axons to a unique domain of interconnected glomeruli in the caudal olfactory bulb. It is not well understood how the GG relates to other olfactory subsystems in contributing to the olfactory sense. Furthermore, the range of chemoreceptors and the signal transduction cascade utilized by the GG have remained mysterious. To resolve these unknowns, we explored the molecular relationship between the GG and the GC-D neurons, another olfactory subsystem that innervates similarly interconnected glomeruli in the same bulbar region. We found that mouse GG neurons express the cGMP-associated signaling proteins phosphodiesterase 2a, cGMP-dependent kinase II, and cyclic nucleotide gated channel subunit A3 coupled to a chemoreceptor repertoire of cilia-localized particulate guanylyl cyclases (pGC-G and pGC-A). The primary cGMP signaling pathway of the GG is shared with the GC-D neurons, unifying their target glomeruli as a unique center of olfactory cGMP signal transduction. However, the distinct chemoreceptor repertoire in the GG suggests that the GG is an independent olfactory subsystem. This subsystem is well suited to detect a unique set of odors and to mediate behaviors that remained intact in previous olfactory perturbations.

摘要

哺乳动物的嗅觉利用位于鼻腔特定位置的几个嗅觉子系统来检测和报告不同类别的气味。这些嗅觉子系统使用不同的神经元信号转导途径、受体表达库和轴突投射靶点。格伦贝格神经节(GG)是一个新发现的嗅觉子系统,其受体神经元位于鼻孔内侧,轴突投射到尾侧嗅球中相互连接的独特肾小球区域。目前尚不清楚GG在嗅觉中与其他嗅觉子系统是如何相关的。此外,GG所利用的化学感受器范围和信号转导级联仍然是个谜。为了解决这些未知问题,我们探索了GG与GC-D神经元之间的分子关系,GC-D神经元是另一个嗅觉子系统,它支配同一嗅球区域中类似相互连接的肾小球。我们发现,小鼠GG神经元表达与cGMP相关的信号蛋白磷酸二酯酶2a、cGMP依赖性激酶II和环核苷酸门控通道亚基A3,这些蛋白与纤毛定位的颗粒型鸟苷酸环化酶(pGC-G和pGC-A)的化学感受器库偶联。GG的主要cGMP信号通路与GC-D神经元共享,将它们的目标肾小球统一为嗅觉cGMP信号转导的独特中心。然而,GG中独特的化学感受器库表明GG是一个独立的嗅觉子系统。这个子系统非常适合检测一组独特的气味,并介导在先前嗅觉干扰中仍然完整的行为。

相似文献

1
Grueneberg ganglion olfactory subsystem employs a cGMP signaling pathway.
J Comp Neurol. 2009 Sep 1;516(1):36-48. doi: 10.1002/cne.22096.
2
Expression of cGMP signaling elements in the Grueneberg ganglion.
Histochem Cell Biol. 2009 Jan;131(1):75-88. doi: 10.1007/s00418-008-0514-8. Epub 2008 Oct 1.
3
Grueneberg ganglion neurons are finely tuned cold sensors.
J Neurosci. 2010 Jun 2;30(22):7563-8. doi: 10.1523/JNEUROSCI.0608-10.2010.
4
Odorant-evoked electrical responses in Grueneberg ganglion neurons rely on cGMP-associated signaling proteins.
Neurosci Lett. 2013 Feb 28;539:38-42. doi: 10.1016/j.neulet.2013.01.032. Epub 2013 Feb 4.
6
The Grueneberg ganglion of the mouse projects axons to glomeruli in the olfactory bulb.
Eur J Neurosci. 2005 Nov;22(10):2649-54. doi: 10.1111/j.1460-9568.2005.04468.x.
7
The cyclic nucleotide-gated ion channel CNGA3 contributes to coolness-induced responses of Grueneberg ganglion neurons.
Cell Mol Life Sci. 2010 Jun;67(11):1859-69. doi: 10.1007/s00018-010-0296-8. Epub 2010 Feb 18.

引用本文的文献

1
Hydrogen sulfide as a potent predator-derived kairomone mediating fear-related responses in mice.
Commun Biol. 2025 Aug 1;8(1):1144. doi: 10.1038/s42003-025-08592-w.
2
Ion channels of cold transduction and transmission.
J Gen Physiol. 2024 Oct 7;156(10). doi: 10.1085/jgp.202313529. Epub 2024 Jul 25.
4
Epigenetic programming of stochastic olfactory receptor choice.
Genesis. 2024 Apr;62(2):e23593. doi: 10.1002/dvg.23593.
5
Olfactory subsystems associated with the necklace glomeruli in rodents.
Cell Tissue Res. 2021 Jan;383(1):549-557. doi: 10.1007/s00441-020-03388-2. Epub 2021 Jan 6.
7
Renewal and Differentiation of GCD Necklace Olfactory Sensory Neurons.
Chem Senses. 2020 May 29;45(5):333-346. doi: 10.1093/chemse/bjaa027.
8
Gli3 Regulates Vomeronasal Neurogenesis, Olfactory Ensheathing Cell Formation, and GnRH-1 Neuronal Migration.
J Neurosci. 2020 Jan 8;40(2):311-326. doi: 10.1523/JNEUROSCI.1977-19.2019. Epub 2019 Nov 25.
9
P/Q Type Calcium Channel Cav2.1 Defines a Unique Subset of Glomeruli in the Mouse Olfactory Bulb.
Front Cell Neurosci. 2018 Sep 4;12:295. doi: 10.3389/fncel.2018.00295. eCollection 2018.
10
Nonproliferative and Proliferative Lesions of the Ratand Mouse Special Sense Organs(Ocular [eye and glands], Olfactory and Otic).
J Toxicol Pathol. 2018;31(3 Suppl):97S-214S. doi: 10.1293/tox.31.97S. Epub 2018 Jul 28.

本文引用的文献

1
Guanylyl cyclase-D in the olfactory CO2 neurons is activated by bicarbonate.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):2041-6. doi: 10.1073/pnas.0812220106. Epub 2009 Jan 30.
2
Subsystem organization of the mammalian sense of smell.
Annu Rev Physiol. 2009;71:115-40. doi: 10.1146/annurev.physiol.70.113006.100608.
3
Grueneberg ganglion cells mediate alarm pheromone detection in mice.
Science. 2008 Aug 22;321(5892):1092-5. doi: 10.1126/science.1160770.
5
ONE-GC membrane guanylate cyclase, a trimodal odorant signal transducer.
Biochem Biophys Res Commun. 2008 Mar 7;367(2):440-5. doi: 10.1016/j.bbrc.2007.12.153. Epub 2008 Jan 4.
6
Axonal wiring of guanylate cyclase-D-expressing olfactory neurons is dependent on neuropilin 2 and semaphorin 3F.
Development. 2007 Nov;134(22):4063-72. doi: 10.1242/dev.008722. Epub 2007 Oct 17.
7
Function and dysfunction of CNG channels: insights from channelopathies and mouse models.
Mol Neurobiol. 2007 Jun;35(3):266-77. doi: 10.1007/s12035-007-0025-y.
8
Contribution of the receptor guanylyl cyclase GC-D to chemosensory function in the olfactory epithelium.
Proc Natl Acad Sci U S A. 2007 Sep 4;104(36):14507-12. doi: 10.1073/pnas.0704965104. Epub 2007 Aug 27.
9
Detection of near-atmospheric concentrations of CO2 by an olfactory subsystem in the mouse.
Science. 2007 Aug 17;317(5840):953-7. doi: 10.1126/science.1144233.
10
Grafts of Schwann cells engineered to express PSA-NCAM promote functional recovery after spinal cord injury.
Brain. 2007 Aug;130(Pt 8):2159-74. doi: 10.1093/brain/awm155. Epub 2007 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验