Suppr超能文献

硫辛酸在酵母线粒体中的合成与附着

Lipoic acid synthesis and attachment in yeast mitochondria.

作者信息

Schonauer Melissa S, Kastaniotis Alexander J, Kursu V A Samuli, Hiltunen J Kalervo, Dieckmann Carol L

机构信息

Department of Biochemistry, University of Arizona, Tucson, Arizona 85721, USA.

出版信息

J Biol Chem. 2009 Aug 28;284(35):23234-42. doi: 10.1074/jbc.M109.015594. Epub 2009 Jul 1.

Abstract

Lipoic acid is a sulfur-containing cofactor required for the function of several multienzyme complexes involved in the oxidative decarboxylation of alpha-keto acids and glycine. Mechanistic details of lipoic acid metabolism are unclear in eukaryotes, despite two well defined pathways for synthesis and covalent attachment of lipoic acid in prokaryotes. We report here the involvement of four genes in the synthesis and attachment of lipoic acid in Saccharomyces cerevisiae. LIP2 and LIP5 are required for lipoylation of all three mitochondrial target proteins: Lat1 and Kgd2, the respective E2 subunits of pyruvate dehydrogenase and alpha-ketoglutarate dehydrogenase, and Gcv3, the H protein of the glycine cleavage enzyme. LIP3, which encodes a lipoate-protein ligase homolog, is necessary for lipoylation of Lat1 and Kgd2, and the enzymatic activity of Lip3 is essential for this function. Finally, GCV3, encoding the H protein target of lipoylation, is itself absolutely required for lipoylation of Lat1 and Kgd2. We show that lipoylated Gcv3, and not glycine cleavage activity per se, is responsible for this function. Demonstration that a target of lipoylation is required for lipoylation is a novel result. Through analysis of the role of these genes in protein lipoylation, we conclude that only one pathway for de novo synthesis and attachment of lipoic acid exists in yeast. We propose a model for protein lipoylation in which Lip2, Lip3, Lip5, and Gcv3 function in a complex, which may be regulated by the availability of acetyl-CoA, and which in turn may regulate mitochondrial gene expression.

摘要

硫辛酸是几种多酶复合物发挥功能所需的含硫辅因子,这些多酶复合物参与α-酮酸和甘氨酸的氧化脱羧反应。尽管在原核生物中有两条明确的硫辛酸合成及共价连接途径,但真核生物中硫辛酸代谢的机制细节仍不清楚。我们在此报告酿酒酵母中四个基因参与硫辛酸的合成及连接。LIP2和LIP5是三种线粒体靶蛋白脂酰化所必需的:Lat1和Kgd2,分别是丙酮酸脱氢酶和α-酮戊二酸脱氢酶的E2亚基,以及Gcv3,甘氨酸裂解酶的H蛋白。LIP3编码一种硫辛酸-蛋白连接酶同源物,是Lat1和Kgd2脂酰化所必需的,且Lip3的酶活性对该功能至关重要。最后,编码脂酰化H蛋白靶标的GCV3本身是Lat1和Kgd2脂酰化绝对必需的。我们表明,脂酰化的Gcv3而非甘氨酸裂解活性本身负责此功能。证明脂酰化的一个靶标是脂酰化所必需的是一个新结果。通过分析这些基因在蛋白质脂酰化中的作用,我们得出结论,酵母中仅存在一条硫辛酸从头合成及连接的途径。我们提出了一个蛋白质脂酰化模型,其中Lip2、Lip3、Lip5和Gcv3在一个复合物中发挥作用,该复合物可能受乙酰辅酶A可用性的调节,进而可能调节线粒体基因表达。

相似文献

1
Lipoic acid synthesis and attachment in yeast mitochondria.
J Biol Chem. 2009 Aug 28;284(35):23234-42. doi: 10.1074/jbc.M109.015594. Epub 2009 Jul 1.
2
Genetic dissection of the mitochondrial lipoylation pathway in yeast.
BMC Biol. 2021 Jan 25;19(1):14. doi: 10.1186/s12915-021-00951-3.
3
Modifications of the lipoamide-containing mitochondrial subproteome in a yeast mutant defective in cysteine desulfurase.
Mol Cell Proteomics. 2006 Aug;5(8):1426-36. doi: 10.1074/mcp.M600099-MCP200. Epub 2006 May 8.
4
9
Biallelic Mutations in LIPT2 Cause a Mitochondrial Lipoylation Defect Associated with Severe Neonatal Encephalopathy.
Am J Hum Genet. 2017 Aug 3;101(2):283-290. doi: 10.1016/j.ajhg.2017.07.001. Epub 2017 Jul 27.
10
Development and retention of a primordial moonlighting pathway of protein modification in the absence of selection presents a puzzle.
Proc Natl Acad Sci U S A. 2018 Jan 23;115(4):647-655. doi: 10.1073/pnas.1718653115. Epub 2018 Jan 16.

引用本文的文献

1
Protein lipoylation in cancer: metabolic reprogramming and therapeutic potential.
Cell Death Discov. 2025 Sep 2;11(1):420. doi: 10.1038/s41420-025-02718-z.
2
Lipid-dependent growth of Malassezia spp. in defined medium with single fatty acids.
FEMS Yeast Res. 2025 Jan 30;25. doi: 10.1093/femsyr/foaf043.
5
Structural basis for catalysis by human lipoyl synthase.
Nat Commun. 2025 Jul 10;16(1):6355. doi: 10.1038/s41467-025-61393-x.
6
Engineering yeast for tailored fatty acid profiles.
Appl Microbiol Biotechnol. 2025 Apr 22;109(1):101. doi: 10.1007/s00253-025-13487-1.
7
A response to iron involving carbon metabolism in the opportunistic fungal pathogen .
mSphere. 2025 Apr 29;10(4):e0004025. doi: 10.1128/msphere.00040-25. Epub 2025 Apr 4.
9
Lipoic acid attachment to proteins: stimulating new developments.
Microbiol Mol Biol Rev. 2024 Jun 27;88(2):e0000524. doi: 10.1128/mmbr.00005-24. Epub 2024 Apr 16.

本文引用的文献

1
Intersection of RNA processing and the type II fatty acid synthesis pathway in yeast mitochondria.
Mol Cell Biol. 2008 Nov;28(21):6646-57. doi: 10.1128/MCB.01162-08. Epub 2008 Sep 8.
2
An ancient genetic link between vertebrate mitochondrial fatty acid synthesis and RNA processing.
FASEB J. 2008 Feb;22(2):569-78. doi: 10.1096/fj.07-8986. Epub 2007 Sep 26.
3
Clustal W and Clustal X version 2.0.
Bioinformatics. 2007 Nov 1;23(21):2947-8. doi: 10.1093/bioinformatics/btm404. Epub 2007 Sep 10.
4
Crystal structure of bovine lipoyltransferase in complex with lipoyl-AMP.
J Mol Biol. 2007 Aug 3;371(1):222-34. doi: 10.1016/j.jmb.2007.05.059. Epub 2007 May 26.
5
Characterization of a lipoate-protein ligase A gene of rice (Oryza sativa L.).
Gene. 2007 May 15;393(1-2):53-61. doi: 10.1016/j.gene.2007.01.011. Epub 2007 Jan 26.
6
The Mycobacterium tuberculosis LipB enzyme functions as a cysteine/lysine dyad acyltransferase.
Proc Natl Acad Sci U S A. 2006 Jun 6;103(23):8662-7. doi: 10.1073/pnas.0510436103. Epub 2006 May 30.
7
Modifications of the lipoamide-containing mitochondrial subproteome in a yeast mutant defective in cysteine desulfurase.
Mol Cell Proteomics. 2006 Aug;5(8):1426-36. doi: 10.1074/mcp.M600099-MCP200. Epub 2006 May 8.
8
Global landscape of protein complexes in the yeast Saccharomyces cerevisiae.
Nature. 2006 Mar 30;440(7084):637-43. doi: 10.1038/nature04670. Epub 2006 Mar 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验