Suppr超能文献

基于不完全纵向数据的贝叶斯推断:量化对不可忽略缺失数据敏感性的一种简单方法。

Bayesian inference from incomplete longitudinal data: a simple method to quantify sensitivity to nonignorable dropout.

机构信息

Department of Epidemiology and Biostatistics, University of Illinois, Chicago, IL 60612, USA.

出版信息

Stat Med. 2009 Sep 30;28(22):2725-47. doi: 10.1002/sim.3655.

Abstract

Bayesian approach has been increasingly used for analyzing longitudinal data. When dropout occurs in the study, analysis often relies on the assumption of ignorable dropout. Because ignorability is a critical and untestable assumption without obtaining additional data or making other unverifiable assumptions, it is important to assess the impact of departures from the ignorability assumption on the key Bayesian inferences. In this paper, we extend the Bayesian index of local sensitivity to non-ignorability (ISNI) method proposed by Zhang and Heitjan to longitudinal data with dropout. We derive formulas for the Bayesian ISNI when the complete longitudinal data follow a linear mixed-effect model. The calculation of the index only requires the posterior draws or summary statistics of these draws from the standard analysis of the ignorable model. Thus, our approach avoids fitting any complicated nonignorable model. One can use the method to evaluate which Bayesian parameter estimates or functions of these estimates in a linear mixed-effect model are susceptible to nonignorable dropout and which ones are not. We illustrate the method using a simulation study and two real examples: rats data set and rheumatoid arthritis clinical trial data set.

摘要

贝叶斯方法已越来越多地用于分析纵向数据。当研究中出现缺失值时,分析通常依赖于可忽略缺失值的假设。由于不可忽略性是一个关键且未经检验的假设,除非获得额外的数据或做出其他未经证实的假设,否则评估偏离可忽略性假设对关键贝叶斯推断的影响非常重要。在本文中,我们将张和海特简提出的贝叶斯局部敏感性不可忽略性指数(ISNI)方法扩展到具有缺失值的纵向数据。我们推导出当完整的纵向数据服从线性混合效应模型时,贝叶斯 ISNI 的公式。该指数的计算仅需要从可忽略模型的标准分析中获得这些抽取的后验抽取或摘要统计信息。因此,我们的方法避免拟合任何复杂的不可忽略模型。人们可以使用该方法评估线性混合效应模型中的哪些贝叶斯参数估计或这些估计的函数容易受到不可忽略的缺失值的影响,以及哪些不受影响。我们使用模拟研究和两个实际示例(大鼠数据集和类风湿关节炎临床试验数据集)来说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验