功能化亚10纳米铈和氧化铁颗粒在细胞培养基中的电空间增强稳定性
Electrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium.
作者信息
Chanteau B, Fresnais J, Berret J-F
机构信息
Matière et Systèmes Complexes, UMR 7057 CNRS Université Denis Diderot Paris-VII, Bâtiment Condorcet, 10 rue Alice Domon et Leonie Duquet, F-75205 Paris, France.
出版信息
Langmuir. 2009 Aug 18;25(16):9064-70. doi: 10.1021/la900833v.
Applications of nanoparticles in biology require that the nanoparticles remain stable in solutions containing high concentrations of proteins and salts, as well as in cell culture media. In this work, we developed simple protocols for the coating of sub-10 nm nanoparticles and evaluated the colloidal stability of dispersions in various environments. Ligands (citric acid), oligomers [phosphonate-terminated poly(ethylene oxide)], and polymers [poly(acrylic acid)] were used as nanometer-thick adlayers for cerium (CeO2) and iron (gamma-Fe2O3) oxide nanoparticles. The organic functionalities were adsorbed on the particle surfaces via physical (electrostatic) forces. Stability assays at high ionic strengths and in cell culture media were performed by static and dynamic light scattering. Of the three coatings examined, we found that only poly(acrylic acid) fully preserved the dispersion stability over the long term (longer than weeks). The improved stability was explained by the multipoint attachments of the chains onto the particle surface and by the adlayer-mediated electrosteric interactions. These results suggest that anionically charged polymers represent an effective alternative to conventional coating agents.
纳米颗粒在生物学中的应用要求纳米颗粒在含有高浓度蛋白质和盐的溶液以及细胞培养基中保持稳定。在这项工作中,我们开发了用于包覆小于10纳米纳米颗粒的简单方案,并评估了在各种环境中分散体的胶体稳定性。配体(柠檬酸)、低聚物[膦酸酯封端的聚环氧乙烷]和聚合物[聚丙烯酸]被用作铈(CeO2)和铁(γ-Fe2O3)氧化物纳米颗粒的纳米厚吸附层。有机官能团通过物理(静电)力吸附在颗粒表面。通过静态和动态光散射在高离子强度和细胞培养基中进行稳定性测定。在所研究的三种涂层中,我们发现只有聚丙烯酸能长期(超过数周)充分保持分散稳定性。稳定性的提高可通过链在颗粒表面的多点附着以及吸附层介导的电空间相互作用来解释。这些结果表明,带负电荷的聚合物是传统涂层剂的有效替代品。