Dr. K C Patel R&D Centre, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India.
P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India.
Sci Rep. 2020 Sep 17;10(1):15249. doi: 10.1038/s41598-020-71552-3.
Self-regulating temperature-controlled nanoparticles such as Mn-Zn ferrite nanoparticles based magnetic fluid can be a better choice for magnetic fluid hyperthermia because of its controlled regulation of hyperthermia temperature window of 43-45 °C. To test this hypothesis magnetic fluid with said properties was synthesized, and its effect on cervical and breast cancer cell death was studied. We found that the hyperthermia window of 43-45 °C was maintained for one hour at the smallest possible concentration of 0.35 mg/mL without altering the magnetic field applicator parameters. Their hyperthermic effect on HeLa and MCF7 was investigated at the magnetic field of 15.3 kA/m and frequency 330 kHz, which is close to the upper safety limit of 5 * 10 A/m s. We have tested the cytotoxicity of synthesized Mn-Zn ferrite fluid using MTT assay and the results were validated by trypan blue dye exclusion assay that provides the naked eye microscopic view of actual cell death. Since cancer cells tend to resist treatment and show re-growth, we also looked into the effect of multiple sessions hyperthermia using a 24 h window till 72 h using trypan blue assay. The multiple sessions of hyperthermia showed promising results, and it indicated that a minimum of 3 sessions, each of one-hour duration, is required for the complete killing of cancer cells. Moreover, to simulate an in vivo cellular environment, a phantom consisting of magnetic nanoparticles dispersed in 1 and 5% agarose gel was constituted and studied. These results will help to decide the magnetic fluid based hyperthermic therapeutic strategies using temperature-sensitive magnetic fluid.
自调节温度控制的纳米颗粒,如基于 Mn-Zn 铁氧体纳米颗粒的磁性液体,由于其能够控制 43-45°C 的热疗温度窗口,因此可能是磁流体热疗的更好选择。为了验证这一假设,我们合成了具有上述特性的磁性液体,并研究了它对宫颈癌和乳腺癌细胞死亡的影响。我们发现,在磁场应用器参数不变的情况下,最小浓度为 0.35mg/mL 时,可以将 43-45°C 的热疗窗口维持一小时。在磁场为 15.3kA/m、频率为 330kHz 的条件下,研究了其对 HeLa 和 MCF7 的热疗效果,这接近 5*10A/m·s 的上限安全限值。我们使用 MTT 测定法测试了合成的 Mn-Zn 铁氧体液体的细胞毒性,并用台盼蓝排斥试验进行了验证,该试验提供了实际细胞死亡的肉眼可见的微观视图。由于癌细胞往往会抵抗治疗并重新生长,我们还研究了使用 24 小时窗口直至 72 小时的多次热疗的效果,用台盼蓝测定法进行评估。多次热疗显示出有希望的结果,表明需要至少进行三次、每次一小时的热疗,才能彻底杀死癌细胞。此外,为了模拟体内细胞环境,我们构建并研究了由分散在 1%和 5%琼脂糖凝胶中的磁性纳米颗粒组成的虚拟模型。这些结果将有助于决定使用温度敏感磁性液体的基于磁性液体的热疗策略。
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006-12
Mater Sci Eng C Mater Biol Appl. 2016-3-15
J Nanosci Nanotechnol. 2014-1
ACS Appl Mater Interfaces. 2019-2-7
Colloids Surf B Biointerfaces. 2015-12-1
ACS Appl Mater Interfaces. 2025-8-20
ACS Appl Mater Interfaces. 2025-5-21
Nanomaterials (Basel). 2022-2-21
Nanomaterials (Basel). 2021-12-20
Nanomaterials (Basel). 2015-1-9
Nanoscale Res Lett. 2015-12
Int J Radiat Oncol Biol Phys. 2000-9-1
J Immunol Methods. 1983-12-16