文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

体外热疗磁流体对宫颈癌细胞和乳腺癌细胞的影响。

In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells.

机构信息

Dr. K C Patel R&D Centre, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India.

P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa, 388 421, India.

出版信息

Sci Rep. 2020 Sep 17;10(1):15249. doi: 10.1038/s41598-020-71552-3.


DOI:10.1038/s41598-020-71552-3
PMID:32943662
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7499255/
Abstract

Self-regulating temperature-controlled nanoparticles such as Mn-Zn ferrite nanoparticles based magnetic fluid can be a better choice for magnetic fluid hyperthermia because of its controlled regulation of hyperthermia temperature window of 43-45 °C. To test this hypothesis magnetic fluid with said properties was synthesized, and its effect on cervical and breast cancer cell death was studied. We found that the hyperthermia window of 43-45 °C was maintained for one hour at the smallest possible concentration of 0.35 mg/mL without altering the magnetic field applicator parameters. Their hyperthermic effect on HeLa and MCF7 was investigated at the magnetic field of 15.3 kA/m and frequency 330 kHz, which is close to the upper safety limit of 5 * 10 A/m s. We have tested the cytotoxicity of synthesized Mn-Zn ferrite fluid using MTT assay and the results were validated by trypan blue dye exclusion assay that provides the naked eye microscopic view of actual cell death. Since cancer cells tend to resist treatment and show re-growth, we also looked into the effect of multiple sessions hyperthermia using a 24 h window till 72 h using trypan blue assay. The multiple sessions of hyperthermia showed promising results, and it indicated that a minimum of 3 sessions, each of one-hour duration, is required for the complete killing of cancer cells. Moreover, to simulate an in vivo cellular environment, a phantom consisting of magnetic nanoparticles dispersed in 1 and 5% agarose gel was constituted and studied. These results will help to decide the magnetic fluid based hyperthermic therapeutic strategies using temperature-sensitive magnetic fluid.

摘要

自调节温度控制的纳米颗粒,如基于 Mn-Zn 铁氧体纳米颗粒的磁性液体,由于其能够控制 43-45°C 的热疗温度窗口,因此可能是磁流体热疗的更好选择。为了验证这一假设,我们合成了具有上述特性的磁性液体,并研究了它对宫颈癌和乳腺癌细胞死亡的影响。我们发现,在磁场应用器参数不变的情况下,最小浓度为 0.35mg/mL 时,可以将 43-45°C 的热疗窗口维持一小时。在磁场为 15.3kA/m、频率为 330kHz 的条件下,研究了其对 HeLa 和 MCF7 的热疗效果,这接近 5*10A/m·s 的上限安全限值。我们使用 MTT 测定法测试了合成的 Mn-Zn 铁氧体液体的细胞毒性,并用台盼蓝排斥试验进行了验证,该试验提供了实际细胞死亡的肉眼可见的微观视图。由于癌细胞往往会抵抗治疗并重新生长,我们还研究了使用 24 小时窗口直至 72 小时的多次热疗的效果,用台盼蓝测定法进行评估。多次热疗显示出有希望的结果,表明需要至少进行三次、每次一小时的热疗,才能彻底杀死癌细胞。此外,为了模拟体内细胞环境,我们构建并研究了由分散在 1%和 5%琼脂糖凝胶中的磁性纳米颗粒组成的虚拟模型。这些结果将有助于决定使用温度敏感磁性液体的基于磁性液体的热疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/adab3b819d1b/41598_2020_71552_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/3a8754d36348/41598_2020_71552_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/f4cf5a519dbf/41598_2020_71552_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/051edfba1296/41598_2020_71552_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/30fbd794c57d/41598_2020_71552_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/95f5e41ccae7/41598_2020_71552_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/4ef82f14e82f/41598_2020_71552_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/43575a43b3a7/41598_2020_71552_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/adab3b819d1b/41598_2020_71552_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/3a8754d36348/41598_2020_71552_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/f4cf5a519dbf/41598_2020_71552_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/051edfba1296/41598_2020_71552_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/30fbd794c57d/41598_2020_71552_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/95f5e41ccae7/41598_2020_71552_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/4ef82f14e82f/41598_2020_71552_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/43575a43b3a7/41598_2020_71552_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b30/7499255/adab3b819d1b/41598_2020_71552_Fig8_HTML.jpg

相似文献

[1]
In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells.

Sci Rep. 2020-9-17

[2]
Optimization of magnetic fluid hyperthermia protocols for the elimination of breast cancer cells MCF7 using Mn-Zn ferrite ferrofluid.

J Mater Sci Mater Med. 2023-3-14

[3]
[Preparation and characterization of Mn-Zn ferrite oxygene nanoparticle for tumor thermotherapy].

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2006-12

[4]
A facile microwave synthetic route for ferrite nanoparticles with direct impact in magnetic particle hyperthermia.

Mater Sci Eng C Mater Biol Appl. 2016-3-15

[5]
Recent advances in nanosized Mn-Zn ferrite magnetic fluid hyperthermia for cancer treatment.

J Nanosci Nanotechnol. 2014-1

[6]
Real-time infrared thermography detection of magnetic nanoparticle hyperthermia in a murine model under a non-uniform field configuration.

Int J Hyperthermia. 2013-10-18

[7]
Efficient treatment of breast cancer xenografts with multifunctionalized iron oxide nanoparticles combining magnetic hyperthermia and anti-cancer drug delivery.

Breast Cancer Res. 2015-5-13

[8]
Comparative Heating Efficiency of Cobalt-, Manganese-, and Nickel-Ferrite Nanoparticles for a Hyperthermia Agent in Biomedicines.

ACS Appl Mater Interfaces. 2019-2-7

[9]
The anti-hepatoma effect of nanosized Mn-Zn ferrite magnetic fluid hyperthermia associated with radiation in vitro and in vivo.

Nanotechnology. 2013-5-24

[10]
Multifunctional nano manganese ferrite ferrofluid for efficient theranostic application.

Colloids Surf B Biointerfaces. 2015-12-1

引用本文的文献

[1]
From Structure to Function: Zn/Mn-Modified Maghemite as an Advanced Nanoplatform for Magnetic Hyperthermia and Radionuclide Therapy.

ACS Appl Mater Interfaces. 2025-8-20

[2]
From Bimetallic Oleates to Customized Biomedical Nanoplatforms: A Versatile Approach for the Multidoping of Ferrites.

ACS Appl Mater Interfaces. 2025-5-21

[3]
Advanced Nanomaterials for Cancer Therapy: Gold, Silver, and Iron Oxide Nanoparticles in Oncological Applications.

Adv Healthc Mater. 2025-2

[4]
In Vitro Superparamagnetic Hyperthermia Employing Magnetite Gamma-Cyclodextrin Nanobioconjugates for Human Squamous Skin Carcinoma Therapy.

Int J Mol Sci. 2024-7-31

[5]
High Biocompatibility, MRI Enhancement, and Dual Chemo- and Thermal-Therapy of Curcumin-Encapsulated Alginate/FeO Nanoparticles.

Pharmaceutics. 2023-5-18

[6]
High Efficacy on the Death of Breast Cancer Cells Using SPMHT with Magnetite Cyclodextrins Nanobioconjugates.

Pharmaceutics. 2023-4-4

[7]
The State of the Art of Natural Polymer Functionalized FeO Magnetic Nanoparticle Composites for Drug Delivery Applications: A Review.

Gels. 2023-2-1

[8]
Doped Ferrite Nanoparticles Exhibiting Self-Regulating Temperature as Magnetic Fluid Hyperthermia Antitumoral Agents, with Diagnostic Capability in Magnetic Resonance Imaging and Magnetic Particle Imaging.

Cancers (Basel). 2022-10-20

[9]
Application of the Photoacoustic Approach in the Characterization of Nanostructured Materials.

Nanomaterials (Basel). 2022-2-21

[10]
Sol-Gel Synthesis, Structure, Morphology and Magnetic Properties of NiMnFeO Nanoparticles Embedded in SiO Matrix.

Nanomaterials (Basel). 2021-12-20

本文引用的文献

[1]
Magnetic Properties of Magnetic Nanoparticles for Efficient Hyperthermia.

Nanomaterials (Basel). 2015-1-9

[2]
Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review.

Biomed Eng Online. 2017-3-23

[3]
Polyethylene Glycol-Mediated Synthesis of Cubic Iron Oxide Nanoparticles with High Heating Power.

Nanoscale Res Lett. 2015-12

[4]
Impact of magnetic field parameters and iron oxide nanoparticle properties on heat generation for use in magnetic hyperthermia.

J Magn Magn Mater. 2015-8-1

[5]
Synthesis, surface modification and characterisation of biocompatible magnetic iron oxide nanoparticles for biomedical applications.

Molecules. 2013-6-27

[6]
Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme.

J Neurooncol. 2010-9-16

[7]
Electrosteric enhanced stability of functional sub-10 nm cerium and iron oxide particles in cell culture medium.

Langmuir. 2009-8-18

[8]
Preoperative radiochemotherapy in locally advanced or recurrent rectal cancer: regional radiofrequency hyperthermia correlates with clinical parameters.

Int J Radiat Oncol Biol Phys. 2000-9-1

[9]
Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays.

J Immunol Methods. 1983-12-16

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索