Graf Alexandra C, Bauer Peter
Medical University of Vienna.
Stat Appl Genet Mol Biol. 2009;8:Article31. doi: 10.2202/1544-6115.1462. Epub 2009 Jun 25.
We evaluate variable selection by multiple tests controlling the false discovery rate (FDR) to build a linear score for prediction of clinical outcome in high-dimensional data. Quality of prediction is assessed by the receiver operating characteristic curve (ROC) for prediction in independent patients. Thus we try to combine both goals: prediction and controlled structure estimation. We show that the FDR-threshold which provides the ROC-curve with the largest area under the curve (AUC) varies largely over the different parameter constellations not known in advance. Hence, we investigated a new cross validation procedure based on the maximum rank correlation estimator to determine the optimal selection threshold. This procedure (i) allows choosing an appropriate selection criterion, (ii) provides an estimate of the FDR close to the true FDR and (iii) is simple and computationally feasible for rather moderate to small sample sizes. Low estimates of the cross validated AUC (the estimates generally being positively biased) and large estimates of the cross validated FDR may indicate a lack of sufficiently prognostic variables and/or too small sample sizes. The method is applied to an oncology dataset.
我们通过控制错误发现率(FDR)的多重检验来评估变量选择,以构建一个线性评分,用于预测高维数据中的临床结局。通过独立患者预测的受试者工作特征曲线(ROC)评估预测质量。因此,我们试图兼顾两个目标:预测和可控结构估计。我们表明,为ROC曲线提供最大曲线下面积(AUC)的FDR阈值在不同的参数组合中变化很大,而这些参数组合事先并不知晓。因此,我们研究了一种基于最大秩相关估计器的新交叉验证程序,以确定最佳选择阈值。该程序(i)允许选择合适的选择标准,(ii)提供接近真实FDR的FDR估计值,并且(iii)对于中等至小样本量而言简单且计算可行。交叉验证AUC的低估计值(估计值通常存在正偏差)和交叉验证FDR的高估计值可能表明缺乏足够的预后变量和/或样本量过小。该方法应用于一个肿瘤学数据集。