Suppr超能文献

通过cAMP介导的PKA依赖性Ca2+循环与表面膜通道的相互作用对基础和储备心脏起搏器功能的调节。

Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP-mediated PKA-dependent Ca2+ cycling with surface membrane channels.

作者信息

Vinogradova Tatiana M, Lakatta Edward G

机构信息

Laboratory of Cardiovascular Science, Gerontology Research Center, NIA, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA.

出版信息

J Mol Cell Cardiol. 2009 Oct;47(4):456-74. doi: 10.1016/j.yjmcc.2009.06.014. Epub 2009 Jun 30.

Abstract

Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells to generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca(2+) and, specifically Ca(2+) release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca(2+) releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cell spontaneous firing. Local Ca(2+) releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca(2+) releases activate an inward Na(+)-Ca(2+) exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via beta-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca(2+) releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca(2+) cycling in regulation of the heart pacemaker clock, both in the basal state and during beta-adrenergic receptor stimulation.

摘要

几十年来,针对心脏的主要起搏器——窦房结展开的深入研究,已确定了特定膜通道在舒张期去极化产生过程中的潜在作用,舒张期去极化是窦房结细胞产生自发搏动的主要机制。在过去三十年里,对分离的窦房结或窦房结细胞进行的多项研究表明,Ca(2+),特别是肌浆网释放的Ca(2+),对心脏起搏器的自发搏动起着关键作用。最近,在舒张期去极化后半段,来自兰尼碱受体的自发、有节律的局部肌膜下Ca(2+)释放,被认为是窦房结细胞自发放电产生的一个重要因素。局部Ca(2+)释放由腺苷酸环化酶产生的高基础cAMP、磷酸二酯酶对cAMP的高基础降解以及高水平的cAMP介导的PKA依赖性磷酸化的独特组合驱动。这些局部Ca(2+)释放激活内向Na(+)-Ca(2+)交换电流,加速终末舒张期去极化速率,从而控制自发起搏器放电。基础的主要起搏器搏动率及其通过β-肾上腺素能受体刺激的调节,似乎都严重依赖于完整的兰尼碱受体功能和局部肌膜下肌浆网产生的Ca(2+)释放。这篇综述旨在整合传统观点,即强调表面膜离子通道整体在心脏主要起搏器自发放电中的主导地位,以及cAMP介导的PKA依赖性Ca(2+)循环在基础状态和β-肾上腺素能受体刺激期间对心脏起搏器时钟调节的这些新观点。

相似文献

3
Basal Spontaneous Firing of Rabbit Sinoatrial Node Cells Is Regulated by Dual Activation of PDEs (Phosphodiesterases) 3 and 4.
Circ Arrhythm Electrophysiol. 2018 Jun;11(6):e005896. doi: 10.1161/CIRCEP.117.005896.
4
A full range of mouse sinoatrial node AP firing rates requires protein kinase A-dependent calcium signaling.
J Mol Cell Cardiol. 2011 Nov;51(5):730-9. doi: 10.1016/j.yjmcc.2011.07.028. Epub 2011 Aug 4.
8
A coupled-clock system drives the automaticity of human sinoatrial nodal pacemaker cells.
Sci Signal. 2018 Jun 12;11(534):eaap7608. doi: 10.1126/scisignal.aap7608.
9
CaMKII-dependent phosphorylation regulates basal cardiac pacemaker function via modulation of local Ca2+ releases.
Am J Physiol Heart Circ Physiol. 2016 Sep 1;311(3):H532-44. doi: 10.1152/ajpheart.00765.2015. Epub 2016 Jul 8.
10
Ca2+-regulated-cAMP/PKA signaling in cardiac pacemaker cells links ATP supply to demand.
J Mol Cell Cardiol. 2011 Nov;51(5):740-8. doi: 10.1016/j.yjmcc.2011.07.018. Epub 2011 Jul 28.

引用本文的文献

2
Activation of IPR in atrial cardiomyocytes leads to generation of cytosolic cAMP.
Am J Physiol Heart Circ Physiol. 2024 Oct 1;327(4):H830-H846. doi: 10.1152/ajpheart.00152.2024. Epub 2024 Aug 2.
3
What makes the sinoatrial node tick? A question not for the faint of heart.
Philos Trans R Soc Lond B Biol Sci. 2023 Jun 19;378(1879):20220180. doi: 10.1098/rstb.2022.0180. Epub 2023 May 1.
4
Diversity of cells and signals in the cardiovascular system.
J Physiol. 2023 Jul;601(13):2547-2592. doi: 10.1113/JP284011. Epub 2023 Feb 16.
7
Multilayer control of cardiac electrophysiology by microRNAs.
J Mol Cell Cardiol. 2022 May;166:107-115. doi: 10.1016/j.yjmcc.2022.02.007. Epub 2022 Mar 3.
8
Deciphering cellular signals in adult mouse sinoatrial node cells.
iScience. 2021 Dec 25;25(1):103693. doi: 10.1016/j.isci.2021.103693. eCollection 2022 Jan 21.
10
What keeps us ticking? Sinoatrial node mechano-sensitivity: the grandfather clock of cardiac rhythm.
Biophys Rev. 2021 Sep 15;13(5):707-716. doi: 10.1007/s12551-021-00831-8. eCollection 2021 Oct.

本文引用的文献

1
AKAP-scaffolding proteins and regulation of cardiac physiology.
Physiology (Bethesda). 2009 Apr;24:78-87. doi: 10.1152/physiol.00041.2008.
2
What keeps us ticking: a funny current, a calcium clock, or both?
J Mol Cell Cardiol. 2009 Aug;47(2):157-70. doi: 10.1016/j.yjmcc.2009.03.022. Epub 2009 Apr 8.
3
Calmodulin kinase II is required for fight or flight sinoatrial node physiology.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5972-7. doi: 10.1073/pnas.0806422106. Epub 2009 Mar 10.
4
Intracellular calcium dynamics and acceleration of sinus rhythm by beta-adrenergic stimulation.
Circulation. 2009 Feb 17;119(6):788-96. doi: 10.1161/CIRCULATIONAHA.108.817379. Epub 2009 Feb 2.
5
Synergism of coupled subsarcolemmal Ca2+ clocks and sarcolemmal voltage clocks confers robust and flexible pacemaker function in a novel pacemaker cell model.
Am J Physiol Heart Circ Physiol. 2009 Mar;296(3):H594-615. doi: 10.1152/ajpheart.01118.2008. Epub 2009 Jan 9.
6
KCNE variants reveal a critical role of the beta subunit carboxyl terminus in PKA-dependent regulation of the IKs potassium channel.
Channels (Austin). 2009 Jan-Feb;3(1):16-24. doi: 10.4161/chan.3.1.7387. Epub 2009 Jan 7.
7
Dysfunction in ankyrin-B-dependent ion channel and transporter targeting causes human sinus node disease.
Proc Natl Acad Sci U S A. 2008 Oct 7;105(40):15617-22. doi: 10.1073/pnas.0805500105. Epub 2008 Oct 1.
8
Genesis and regulation of the heart automaticity.
Physiol Rev. 2008 Jul;88(3):919-82. doi: 10.1152/physrev.00018.2007.
9
Tamoxifen-inducible gene deletion in the cardiac conduction system.
J Mol Cell Cardiol. 2008 Jul;45(1):62-9. doi: 10.1016/j.yjmcc.2008.04.008. Epub 2008 Apr 30.
10
Control of cardiac rate by "funny" channels in health and disease.
Ann N Y Acad Sci. 2008 Mar;1123:213-23. doi: 10.1196/annals.1420.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验