Laboratory of Cardiovascular Science, Gerontology Research Center, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224-6825, USA.
J Mol Cell Cardiol. 2011 Nov;51(5):740-8. doi: 10.1016/j.yjmcc.2011.07.018. Epub 2011 Jul 28.
In sinoatrial node cells (SANC), Ca(2+) activates adenylate cyclase (AC) to generate a high basal level of cAMP-mediated/protein kinase A (PKA)-dependent phosphorylation of Ca(2+) cycling proteins. These result in spontaneous sarcoplasmic-reticulum (SR) generated rhythmic Ca(2+) oscillations during diastolic depolarization, that not only trigger the surface membrane to generate rhythmic action potentials (APs), but, in a feed-forward manner, also activate AC/PKA signaling. ATP is consumed to pump Ca(2+) to the SR, to produce cAMP, to support contraction and to maintain cell ionic homeostasis.
Since feedback mechanisms link ATP-demand to ATP production, we hypothesized that (1) both basal ATP supply and demand in SANC would be Ca(2+)-cAMP/PKA dependent; and (2) due to its feed-forward nature, a decrease in flux through the Ca(2+)-cAMP/PKA signaling axis will reduce the basal ATP production rate.
O(2) consumption in spontaneous beating SANC was comparable to ventricular myocytes (VM) stimulated at 3 Hz. Graded reduction of basal Ca(2+)-cAMP/PKA signaling to reduce ATP demand in rabbit SANC produced graded ATP depletion (r(2)=0.96), and reduced O(2) consumption and flavoprotein fluorescence. Neither inhibition of glycolysis, selectively blocking contraction nor specific inhibition of mitochondrial Ca(2+) flux reduced the ATP level.
Feed-forward basal Ca(2+)-cAMP/PKA signaling both consumes ATP to drive spontaneous APs in SANC and is tightly linked to mitochondrial ATP production. Interfering with Ca(2+)-cAMP/PKA signaling not only slows the firing rate and reduces ATP consumption, but also appears to reduce ATP production so that ATP levels fall. This distinctly differs from VM, which lack this feed-forward basal cAMP/PKA signaling, and in which ATP level remains constant when the demand changes.
在窦房结细胞(SANC)中,Ca2+激活腺苷酸环化酶(AC),产生高基础水平的 cAMP 介导/蛋白激酶 A(PKA)依赖性磷酸化钙循环蛋白。这导致舒张去极化期间自发性肌浆网(SR)产生节律性 Ca2+振荡,不仅触发细胞膜产生节律性动作电位(AP),而且以正反馈方式激活 AC/PKA 信号。ATP 用于将 Ca2+泵入 SR,产生 cAMP,支持收缩并维持细胞离子稳态。
由于反馈机制将 ATP 需求与 ATP 产生联系起来,我们假设:(1)SANC 中的基础 ATP 供应和需求均依赖于 Ca2+-cAMP/PKA;(2)由于其正反馈性质,通过 Ca2+-cAMP/PKA 信号轴的通量减少将降低基础 ATP 产生速率。
自发跳动的 SANC 的 O2 消耗与以 3Hz 刺激的心室肌细胞(VM)相当。兔 SANC 中基础 Ca2+-cAMP/PKA 信号的分级降低以减少 ATP 需求,导致 ATP 耗竭分级(r2=0.96),并减少 O2 消耗和黄素蛋白荧光。抑制糖酵解、选择性阻断收缩或特异性抑制线粒体 Ca2+通量均未降低 ATP 水平。
正反馈基础 Ca2+-cAMP/PKA 信号既消耗 ATP 以驱动 SANC 中的自发性 AP,又与线粒体 ATP 产生紧密相关。干扰 Ca2+-cAMP/PKA 信号不仅会降低放电率并减少 ATP 消耗,而且似乎还会降低 ATP 产生,从而导致 ATP 水平下降。这与缺乏这种正反馈基础 cAMP/PKA 信号的 VM 明显不同,并且当需求变化时,VM 的 ATP 水平保持不变。