Suppr超能文献

肺泡上皮细胞对特定纳米颗粒群体的转位机制。

Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles.

机构信息

Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90033, USA.

出版信息

Am J Respir Cell Mol Biol. 2010 May;42(5):604-14. doi: 10.1165/rcmb.2009-0138OC. Epub 2009 Jul 2.

Abstract

To explore mechanisms of nanoparticle interactions with and trafficking across lung alveolar epithelium, we utilized primary rat alveolar epithelial cell monolayers (RAECMs) and an artificial lipid bilayer on filter model (ALBF). Trafficking rates of fluorescently labeled polystyrene nanoparticles (PNPs; 20 and 100 nm, carboxylate (negatively charged) or amidine (positively charged)-modified) in the apical-to-basolateral direction under various experimental conditions were measured. Using confocal laser scanning microscopy, we investigated PNP colocalization with early endosome antigen-1, caveolin-1, clathrin heavy chain, cholera toxin B, and wheat germ agglutinin. Leakage of 5-carboxyfluorescein diacetate from RAECMs, and trafficking of (22)Na and (14)C-mannitol across ALBF, were measured in the presence and absence of PNPs. Results showed that trafficking of positively charged PNPs was 20-40 times that of negatively charged PNPs across both RAECMs and ALBF, whereas translocation of PNPs across RAECMs was 2-3 times faster than that across ALBF. Trafficking rates of PNPs across RAECMs did not change in the presence of EGTA (which decreased transepithelial electrical resistance to zero) or inhibitors of endocytosis. Confocal laser scanning microscopy revealed no intracellular colocalization of PNPs with early endosome antigen-1, caveolin-1, clathrin heavy chain, cholera toxin B, or wheat germ agglutinin. Leakage of 5-carboxyfluorescein diacetate from alveolar epithelial cells, and sodium ion and mannitol flux across ALBF, were not different in the presence or absence of PNPs. These data indicate that PNPs translocate primarily transcellularly across RAECMs, but not via known major endocytic pathways, and suggest that such translocation may take place by diffusion of PNPs through the lipid bilayer of cell plasma membranes.

摘要

为了探索纳米颗粒与肺泡上皮细胞相互作用和转运的机制,我们利用原代大鼠肺泡上皮细胞单层(RAECM)和滤膜上的人工脂质双层(ALBF)模型。在各种实验条件下,测量了荧光标记的聚苯乙烯纳米颗粒(PNP;20 和 100nm,羧基(带负电荷)或脒基(带正电荷)修饰)在顶侧向基底侧的转运速率。通过共聚焦激光扫描显微镜,我们研究了 PNP 与早期内体抗原-1、窖蛋白-1、网格蛋白重链、霍乱毒素 B 和麦胚凝集素的共定位。在存在和不存在 PNP 的情况下,测量了 5-羧基荧光素二乙酸酯从 RAECM 的渗漏以及 (22)Na 和 (14)C-甘露醇穿过 ALBF 的转运。结果表明,带正电荷的 PNP 在 RAECM 和 ALBF 中的转运速率是带负电荷的 PNP 的 20-40 倍,而 PNP 在 RAECM 中的转运速率比在 ALBF 中的转运速率快 2-3 倍。在 EGTA(将跨上皮电阻降低至零)或内吞抑制剂存在的情况下,PNP 在 RAECM 中的转运速率没有变化。共聚焦激光扫描显微镜显示,PNP 与早期内体抗原-1、窖蛋白-1、网格蛋白重链、霍乱毒素 B 或麦胚凝集素没有细胞内共定位。5-羧基荧光素二乙酸酯从肺泡上皮细胞的渗漏以及 ALBF 上钠离子和甘露醇的通量,在存在或不存在 PNP 的情况下没有差异。这些数据表明,PNP 主要通过 RAECM 的细胞间转运,而不是通过已知的主要内吞途径进行转运,并且表明这种转运可能通过 PNP 在细胞膜质双层中的扩散发生。

相似文献

1
Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles.
Am J Respir Cell Mol Biol. 2010 May;42(5):604-14. doi: 10.1165/rcmb.2009-0138OC. Epub 2009 Jul 2.
2
Polystyrene nanoparticle trafficking across MDCK-II.
Nanomedicine. 2011 Oct;7(5):588-94. doi: 10.1016/j.nano.2011.01.008. Epub 2011 Feb 26.
3
Polystyrene nanoparticle trafficking across alveolar epithelium.
Nanomedicine. 2008 Jun;4(2):139-45. doi: 10.1016/j.nano.2008.02.002. Epub 2008 Mar 28.
4
Nanoparticle translocation across mouse alveolar epithelial cell monolayers: species-specific mechanisms.
Nanomedicine. 2013 Aug;9(6):786-94. doi: 10.1016/j.nano.2013.01.007. Epub 2013 Feb 20.
5
Translocation of PEGylated quantum dots across rat alveolar epithelial cell monolayers.
Int J Nanomedicine. 2011;6:2849-57. doi: 10.2147/IJN.S26051. Epub 2011 Nov 10.
6
Biokinetic modeling of nanoparticle interactions with lung alveolar epithelial cells: uptake, intracellular processing, and egress.
Am J Physiol Regul Integr Comp Physiol. 2021 Jan 1;320(1):R36-R43. doi: 10.1152/ajpregu.00184.2020. Epub 2020 Oct 21.
8
Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis.
Am J Physiol Lung Cell Mol Physiol. 2018 Aug 1;315(2):L286-L300. doi: 10.1152/ajplung.00108.2018. Epub 2018 May 3.
10
Size dependent disruption of tethered lipid bilayers by functionalized polystyrene nanoparticles.
Biochim Biophys Acta. 2015 Jan;1848(1 Pt A):67-75. doi: 10.1016/j.bbamem.2014.09.014. Epub 2014 Oct 5.

引用本文的文献

1
Aerosol size determination via light scattering of viruses and protein complexes.
Commun Phys. 2025;8(1):155. doi: 10.1038/s42005-025-02076-3. Epub 2025 Apr 12.
2
Nanotechnology in healthcare, and its safety and environmental risks.
J Nanobiotechnology. 2024 Nov 15;22(1):715. doi: 10.1186/s12951-024-02901-x.
3
Human Exposure to Microplastics and Its Associated Health Risks.
Environ Health (Wash). 2023 Aug 2;1(3):139-149. doi: 10.1021/envhealth.3c00053. eCollection 2023 Sep 15.
4
Indoor air pollution and airway health.
J Allergy Clin Immunol. 2024 Oct;154(4):835-846. doi: 10.1016/j.jaci.2024.08.013. Epub 2024 Aug 23.
5
Nanotechnology's frontier in combatting infectious and inflammatory diseases: prevention and treatment.
Signal Transduct Target Ther. 2024 Feb 21;9(1):34. doi: 10.1038/s41392-024-01745-z.
6
Do Ultrafine Particles Carry Any Weight When It Comes to Progression of Pulmonary Fibrosis?
Am J Respir Crit Care Med. 2024 May 1;209(9):1050-1051. doi: 10.1164/rccm.202312-2368ED.
7
Ambient Ultrafine Particulate Matter and Clinical Outcomes in Fibrotic Interstitial Lung Disease.
Am J Respir Crit Care Med. 2024 May 1;209(9):1082-1090. doi: 10.1164/rccm.202307-1275OC.
8
Para- and Transcellular Transport Kinetics of Nanoparticles across Lymphatic Endothelial Cells.
Mol Pharm. 2024 Mar 4;21(3):1160-1169. doi: 10.1021/acs.molpharmaceut.3c00720. Epub 2023 Oct 18.
9
Could probiotics protect against human toxicity caused by polystyrene nanoplastics and microplastics?
Front Nutr. 2023 Jul 10;10:1186724. doi: 10.3389/fnut.2023.1186724. eCollection 2023.
10
Determinants and mechanisms of inorganic nanoparticle translocation across mammalian biological barriers.
Arch Toxicol. 2023 Aug;97(8):2111-2131. doi: 10.1007/s00204-023-03528-x. Epub 2023 Jun 12.

本文引用的文献

4
Transmembrane delivery of the cell-penetrating peptide conjugated semiconductor quantum dots.
Langmuir. 2008 Oct 21;24(20):11866-71. doi: 10.1021/la802048s. Epub 2008 Sep 27.
5
Uptake mechanism of oppositely charged fluorescent nanoparticles in HeLa cells.
Macromol Biosci. 2008 Dec 8;8(12):1135-43. doi: 10.1002/mabi.200800123.
6
Computer simulation study of fullerene translocation through lipid membranes.
Nat Nanotechnol. 2008 Jun;3(6):363-8. doi: 10.1038/nnano.2008.130. Epub 2008 May 18.
7
Immortalization of human alveolar epithelial cells to investigate nanoparticle uptake.
Am J Respir Cell Mol Biol. 2008 Nov;39(5):591-7. doi: 10.1165/rcmb.2007-0334OC. Epub 2008 Jun 6.
8
Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles.
Nat Mater. 2008 Jul;7(7):588-95. doi: 10.1038/nmat2202. Epub 2008 May 25.
9
Use of dynasore, the small molecule inhibitor of dynamin, in the regulation of endocytosis.
Methods Enzymol. 2008;438:77-93. doi: 10.1016/S0076-6879(07)38006-3.
10
Polystyrene nanoparticle trafficking across alveolar epithelium.
Nanomedicine. 2008 Jun;4(2):139-45. doi: 10.1016/j.nano.2008.02.002. Epub 2008 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验