Suppr超能文献

肺泡上皮细胞对纳米颗粒的处理会激活自噬和溶酶体胞吐作用。

Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis.

机构信息

Hastings Center for Pulmonary Research, Keck School of Medicine, University of Southern California , Los Angeles, California.

Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California , Los Angeles, California.

出版信息

Am J Physiol Lung Cell Mol Physiol. 2018 Aug 1;315(2):L286-L300. doi: 10.1152/ajplung.00108.2018. Epub 2018 May 3.

Abstract

Using confocal microscopy, we quantitatively assessed uptake, processing, and egress of near-infrared (NIR)-labeled carboxylated polystyrene nanoparticles (PNP) in live alveolar epithelial cells (AEC) during interactions with primary rat AEC monolayers (RAECM). PNP fluorescence intensity (content) and colocalization with intracellular vesicles in a cell were determined over the entire cell volume via z stacking. Isotropic cuvette-based microfluorimetry was used to determine PNP concentration ([PNP]) from anisotropic measurements of PNP content assessed by confocal microscopy. Results showed that PNP uptake kinetics and steady-state intracellular content decreased as diameter increased from 20 to 200 nm. For 20-nm PNP, uptake rate and steady-state intracellular content increased with increased apical [PNP] but were unaffected by inhibition of endocytic pathways. Intracellular PNP increasingly colocalized with autophagosomes and/or lysosomes over time. PNP egress exhibited fast Ca concentration-dependent release and a slower diffusion-like process. Inhibition of microtubule polymerization curtailed rapid PNP egress, resulting in elevated vesicular and intracellular PNP content. Interference with autophagosome formation led to slower PNP uptake and markedly decreased steady-state intracellular content. At steady state, cytosolic [PNP] was higher than apical [PNP], and vesicular [PNP] (~80% of intracellular PNP content) exceeded both cytosolic and intracellular [PNP]. These data are consistent with the following hypotheses: 1) autophagic processing of nanoparticles is essential for maintenance of AEC integrity; 2) altered autophagy and/or lysosomal exocytosis may lead to AEC injury; and 3) intracellular [PNP] in AEC can be regulated, suggesting strategies for enhancement of nanoparticle-driven AEC gene/drug delivery and/or amelioration of AEC nanoparticle-related cellular toxicity.

摘要

使用共聚焦显微镜,我们定量评估了近红外(NIR)标记羧化聚苯乙烯纳米颗粒(PNP)在与原代大鼠肺泡上皮细胞单层(RAECM)相互作用过程中被活的肺泡上皮细胞(AEC)摄取、加工和排出的情况。通过 z 堆叠,在整个细胞体积内测定细胞内囊泡与 PNP 荧光强度(含量)的共定位。使用各向同性比色皿微荧光计,根据共聚焦显微镜评估的 PNP 含量的各向异性测量值,确定 PNP 浓度([PNP])。结果表明,PNP 摄取动力学和稳态细胞内含量随粒径从 20 纳米增加到 200 纳米而降低。对于 20nm 的 PNP,摄取速率和稳态细胞内含量随顶端 [PNP] 的增加而增加,但不受内吞途径抑制的影响。随着时间的推移,细胞内 PNP 与自噬体和/或溶酶体的共定位逐渐增加。PNP 释放表现出快速的 Ca 浓度依赖性释放和较慢的扩散样过程。微管聚合的抑制会减少快速 PNP 释放,导致囊泡和细胞内 PNP 含量升高。自噬体形成的干扰导致 PNP 摄取速度减慢,稳态细胞内含量明显降低。在稳态时,细胞浆 [PNP] 高于顶端 [PNP],囊泡 [PNP](~80%的细胞内 PNP 含量)超过细胞浆和细胞内 [PNP]。这些数据与以下假设一致:1)纳米颗粒的自噬加工对于维持 AEC 完整性至关重要;2)自噬和/或溶酶体胞吐作用的改变可能导致 AEC 损伤;3)AEC 中的细胞内 [PNP] 可以被调节,这表明可以通过增强纳米颗粒驱动的 AEC 基因/药物传递和/或改善与 AEC 纳米颗粒相关的细胞毒性来增强纳米颗粒的作用。

相似文献

1
Alveolar epithelial cell processing of nanoparticles activates autophagy and lysosomal exocytosis.
Am J Physiol Lung Cell Mol Physiol. 2018 Aug 1;315(2):L286-L300. doi: 10.1152/ajplung.00108.2018. Epub 2018 May 3.
2
Evidence for Nanoparticle-Induced Lysosomal Dysfunction in Lung Adenocarcinoma (A549) Cells.
Int J Mol Sci. 2019 Oct 23;20(21):5253. doi: 10.3390/ijms20215253.
3
Biokinetic modeling of nanoparticle interactions with lung alveolar epithelial cells: uptake, intracellular processing, and egress.
Am J Physiol Regul Integr Comp Physiol. 2021 Jan 1;320(1):R36-R43. doi: 10.1152/ajpregu.00184.2020. Epub 2020 Oct 21.
4
Polystyrene nanoparticle trafficking across alveolar epithelium.
Nanomedicine. 2008 Jun;4(2):139-45. doi: 10.1016/j.nano.2008.02.002. Epub 2008 Mar 28.
5
Nanoparticle translocation across mouse alveolar epithelial cell monolayers: species-specific mechanisms.
Nanomedicine. 2013 Aug;9(6):786-94. doi: 10.1016/j.nano.2013.01.007. Epub 2013 Feb 20.
6
Mechanisms of alveolar epithelial translocation of a defined population of nanoparticles.
Am J Respir Cell Mol Biol. 2010 May;42(5):604-14. doi: 10.1165/rcmb.2009-0138OC. Epub 2009 Jul 2.
8
Polystyrene nanoparticle trafficking across MDCK-II.
Nanomedicine. 2011 Oct;7(5):588-94. doi: 10.1016/j.nano.2011.01.008. Epub 2011 Feb 26.
9
Protein machineries defining pathways of nanocarrier exocytosis and transcytosis.
Acta Biomater. 2018 Apr 15;71:432-443. doi: 10.1016/j.actbio.2018.03.006. Epub 2018 Mar 10.

引用本文的文献

1
Oral targeting tilianin nanoplatform mitigates atherosclerosis through promoting macrophage phagocytosis and anti-inflammation.
Mater Today Bio. 2025 Aug 16;34:102204. doi: 10.1016/j.mtbio.2025.102204. eCollection 2025 Oct.
2
Evaluating cell cycle- and autophagy-associated cellular accumulation of lipid-based nanoparticles.
Nat Commun. 2025 Jul 1;16(1):5964. doi: 10.1038/s41467-025-60962-4.
6
Exocytosis of Nanoparticles: A Comprehensive Review.
Nanomaterials (Basel). 2023 Jul 30;13(15):2215. doi: 10.3390/nano13152215.
7
Kinetics of autophagic activity in nanoparticle-exposed lung adenocarcinoma (A549) cells.
Autophagy Rep. 2023;2(1). doi: 10.1080/27694127.2023.2186568. Epub 2023 Mar 15.
10
Unraveling GLUT-mediated transcytosis pathway of glycosylated nanodisks.
Asian J Pharm Sci. 2021 Jan;16(1):120-128. doi: 10.1016/j.ajps.2020.07.001. Epub 2020 Jul 27.

本文引用的文献

1
Zinc oxide nanoparticles harness autophagy to induce cell death in lung epithelial cells.
Cell Death Dis. 2017 Jul 27;8(7):e2954. doi: 10.1038/cddis.2017.337.
2
The Nature of a Hard Protein Corona Forming on Quantum Dots Exposed to Human Blood Serum.
Small. 2016 Nov;12(42):5836-5844. doi: 10.1002/smll.201602283. Epub 2016 Sep 8.
3
Influence of Solution Chemistry and Soft Protein Coronas on the Interactions of Silver Nanoparticles with Model Biological Membranes.
Environ Sci Technol. 2016 Mar 1;50(5):2301-9. doi: 10.1021/acs.est.5b04694. Epub 2016 Feb 17.
6
Protein corona of nanoparticles: distinct proteins regulate the cellular uptake.
Biomacromolecules. 2015 Apr 13;16(4):1311-21. doi: 10.1021/acs.biomac.5b00108. Epub 2015 Apr 3.
7
Metallic oxide nanoparticle translocation across the human bronchial epithelial barrier.
Nanoscale. 2015 Mar 14;7(10):4529-44. doi: 10.1039/c4nr07079h.
8
Effect of the protein corona on nanoparticles for modulating cytotoxicity and immunotoxicity.
Int J Nanomedicine. 2014 Dec 18;10:97-113. doi: 10.2147/IJN.S72998. eCollection 2015.
9
Nanoparticle-cell interactions: molecular structure of the protein corona and cellular outcomes.
Acc Chem Res. 2014 Aug 19;47(8):2651-9. doi: 10.1021/ar500190q. Epub 2014 Jul 11.
10
Exploiting intrinsic nanoparticle toxicity: the pros and cons of nanoparticle-induced autophagy in biomedical research.
Chem Rev. 2014 Aug 13;114(15):7581-609. doi: 10.1021/cr400372p. Epub 2014 Jun 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验