Suppr超能文献

极端电场下多通道微芯片中超快速差分离子淌度谱。

Ultrafast differential ion mobility spectrometry at extreme electric fields in multichannel microchips.

机构信息

Biological Sciences Division, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.

出版信息

Anal Chem. 2009 Aug 1;81(15):6489-95. doi: 10.1021/ac900892u.

Abstract

The maximum electric field intensity (E) in field asymmetric waveform ion mobility spectrometry (FAIMS) analyses was doubled to E > 60 kV/cm. In earlier devices with >0.5 mm gaps, such strong fields cause electrical breakdown for nearly all gases at ambient pressure. As the Paschen curves are sublinear, thinner gaps permit higher E: here, we established 61 kV/cm in N(2) using microchips with 35 microm gaps. As FAIMS efficiency is exceptionally sensitive to E, such values can in theory accelerate analyses at equal resolution by over an order of magnitude. Here we demonstrate FAIMS filtering in approximately 20 micros or approximately 1% of the previously needed time, with a resolving power of about half that for "macroscopic" units but sufficing for many applications. Microscopic gaps enable concurrent ion processing in multiple (here, 47) channels, which greatly relaxes the charge capacity constraints of planar FAIMS designs. These chips were integrated with a beta-radiation ion source and charge detector. The separation performance is in line with first-principles modeling that accounts for high-field and anisotropic ion diffusion. By extending FAIMS operation into the previously inaccessible field range, the present instrument advances the capabilities for research into ion transport and expands options for separation of hard-to-resolve species.

摘要

在非对称电场波形离子淌度谱(FAIMS)分析中,最大电场强度(E)增加到 E > 60 kV/cm。在过去的间隙大于 0.5 毫米的设备中,如此强的电场几乎会导致所有气体在环境压力下发生电击穿。由于 Paschen 曲线呈亚线性,因此更薄的间隙允许更高的 E:在这里,我们使用间隙为 35 微米的微芯片在 N2 中建立了 61 kV/cm。由于 FAIMS 效率对 E 非常敏感,因此这些值理论上可以在相同分辨率下加速分析,速度提高一个数量级以上。在这里,我们展示了 FAIMS 过滤大约 20 微秒或之前所需时间的 1%,分辨率约为“宏观”单元的一半,但足以满足许多应用。微观间隙允许在多个(这里是 47 个)通道中同时进行离子处理,这大大放宽了平面 FAIMS 设计的电荷容量限制。这些芯片与β辐射离子源和电荷探测器集成在一起。分离性能与考虑高场和各向异性离子扩散的第一性原理模型一致。通过将 FAIMS 操作扩展到以前无法进入的场范围,本仪器提高了离子传输研究的能力,并扩展了难以分离的物种的分离选择。

相似文献

5
Optimum waveforms for differential ion mobility spectrometry (FAIMS).差分离子迁移谱(FAIMS)的最佳波形
J Am Soc Mass Spectrom. 2008 Sep;19(9):1286-95. doi: 10.1016/j.jasms.2008.05.008. Epub 2008 May 16.

引用本文的文献

3
Engineering synthetic breath biomarkers for respiratory disease.工程合成呼吸生物标志物用于呼吸疾病。
Nat Nanotechnol. 2020 Sep;15(9):792-800. doi: 10.1038/s41565-020-0723-4. Epub 2020 Jul 20.
4
Recommendations for reporting ion mobility Mass Spectrometry measurements.离子淌度质谱测量报告的建议。
Mass Spectrom Rev. 2019 May;38(3):291-320. doi: 10.1002/mas.21585. Epub 2019 Feb 1.
6
Maximizing Ion Transmission in Differential Mobility Spectrometry.最大限度提高差分迁移谱中的离子传输。
J Am Soc Mass Spectrom. 2017 Oct;28(10):2151-2159. doi: 10.1007/s13361-017-1727-7. Epub 2017 Jun 29.
10
Ion mobility-mass spectrometry: time-dispersive instrumentation.离子淌度-质谱联用:时间分散型仪器
Anal Chem. 2015 Feb 3;87(3):1422-36. doi: 10.1021/ac504720m. Epub 2015 Jan 9.

本文引用的文献

8
Optimum waveforms for differential ion mobility spectrometry (FAIMS).差分离子迁移谱(FAIMS)的最佳波形
J Am Soc Mass Spectrom. 2008 Sep;19(9):1286-95. doi: 10.1016/j.jasms.2008.05.008. Epub 2008 May 16.
9
Ion mobility mass spectrometry analysis of human glycourinome.人糖基组的离子淌度质谱分析
Anal Chem. 2008 Apr 1;80(7):2506-13. doi: 10.1021/ac7023443. Epub 2008 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验