Suppr超能文献

高血压颈动脉生长和重塑中的脉动重要性。

Importance of pulsatility in hypertensive carotid artery growth and remodeling.

机构信息

Department of Biomedical Engineering and M.E. DeBakey Institute, USA.

出版信息

J Hypertens. 2009 Oct;27(10):2010-21. doi: 10.1097/HJH.0b013e32832e8dc8.

Abstract

Arteries experience marked variations in blood pressure and flow during the cardiac cycle that can intensify during exercise, in disease, or with aging. Diverse observations increasingly suggest the importance of such pulsatility in arterial homeostasis and adaptations. We used a transverse aortic arch banding model to quantify chronic effects of increased pulsatile pressure and flow on wall morphology, composition, and biaxial mechanical properties in paired mouse arteries: the highly pulsatile right common carotid artery proximal to the band (RCCA-B) and the nearly normal left common carotid artery distal to the band (LCCA-B). Increased pulsatile mechanical stimuli in RCCA-B increased wall thickness compared with LCCA-B, which correlated more strongly with pulse (r* = 0.632; P < 0.01) than mean (r* = 0.020; P = 0.47) or systolic (r* = 0.466; P < 0.05) pressure. Similarly, inner diameter at mean pressure increased in RCCA-B and correlated slightly more strongly with a normalized index of blood velocity pulsatility (r* = 0.915; P < <0.001) than mean flow (r* = 0.834; P < 0.001). Increased wall thickness and luminal diameter in RCCA-B resulted from significant increases in cell number per cross-sectional area (P < 0.001) and collagen-to-elastin ratio (P < 0.05) as well as a moderate (1.7-fold) increase in glycosaminoglycan content, which appears to have contributed to the significant decrease (P < 0.001) in the in-vivo axial stretch in RCCA-B compared with LCCA-B. Changes in RCCA-B also associated with a signficant increase in monocyte chemoattractant protein-1 (P < 0.05) whereas LCCA-B did not. Pulsatile pressure and flow are thus important stimuli in the observed three-dimensional arterial adaptations, and there is a need for increased attention to the roles of both axial wall stress and adventitial remodeling.

摘要

动脉在心动周期中经历明显的血压和血流变化,这些变化在运动、疾病或衰老过程中会加剧。越来越多的多样化观察结果表明,这种脉动性在动脉稳态和适应性中很重要。我们使用横主动脉弓结扎模型来量化增加的脉动压力和流量对配对小鼠动脉壁形态、组成和双轴机械性能的慢性影响:结扎近端的高脉动右颈总动脉(RCCA-B)和结扎远端的近正常左颈总动脉(LCCA-B)。与 LCCA-B 相比,RCCA-B 中的脉动机械刺激增加了壁厚度,与脉搏(r* = 0.632;P < 0.01)的相关性比平均(r* = 0.020;P = 0.47)或收缩压(r* = 0.466;P < 0.05)更强。同样,RCCA-B 中的平均压内径增加,与归一化血流速度脉动指数(r* = 0.915;P < <0.001)的相关性略强于平均流量(r* = 0.834;P < 0.001)。RCCA-B 中的壁厚度和管腔直径增加是由于横截面面积细胞数(P < 0.001)和胶原-弹性蛋白比(P < 0.05)显著增加以及糖胺聚糖含量适度增加(1.7 倍)所致,这似乎导致了 RCCA-B 与 LCCA-B 相比体内轴向拉伸的显著降低(P < 0.001)。RCCA-B 的变化也与单核细胞趋化蛋白-1(MCP-1)的显著增加相关(P < 0.05),而 LCCA-B 则没有。因此,脉动压力和流量是观察到的三维动脉适应性的重要刺激因素,需要更加关注轴向壁应力和外膜重塑的作用。

相似文献

1
Importance of pulsatility in hypertensive carotid artery growth and remodeling.
J Hypertens. 2009 Oct;27(10):2010-21. doi: 10.1097/HJH.0b013e32832e8dc8.
2
Time course of carotid artery growth and remodeling in response to altered pulsatility.
Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1875-83. doi: 10.1152/ajpheart.00872.2009. Epub 2010 Sep 17.
3
Evolving biaxial mechanical properties of mouse carotid arteries in hypertension.
J Biomech. 2011 Sep 23;44(14):2532-7. doi: 10.1016/j.jbiomech.2011.07.018. Epub 2011 Aug 17.
4
Modelling carotid artery adaptations to dynamic alterations in pressure and flow over the cardiac cycle.
Math Med Biol. 2010 Dec;27(4):343-71. doi: 10.1093/imammb/dqq001. Epub 2010 May 19.
5
Altered flow-induced arterial remodeling in vimentin-deficient mice.
Arterioscler Thromb Vasc Biol. 2000 Mar;20(3):611-6. doi: 10.1161/01.atv.20.3.611.
7
Flow-dependent remodeling in the carotid artery of fibroblast growth factor-2 knockout mice.
Arterioscler Thromb Vasc Biol. 2002 Jul 1;22(7):1100-5. doi: 10.1161/01.atv.0000023230.17493.e3.
9
An Effective and Simple Way to Establish Elastase-Induced Middle Carotid Artery Fusiform Aneurysms in Rabbits.
Biomed Res Int. 2020 Aug 26;2020:6707012. doi: 10.1155/2020/6707012. eCollection 2020.

引用本文的文献

1
Ocular Biomechanical Responses to Long-Duration Spaceflight.
IEEE Open J Eng Med Biol. 2024 Sep 5;6:127-132. doi: 10.1109/OJEMB.2024.3453049. eCollection 2025.
2
FSGe: A fast and strongly-coupled 3D fluid-solid-growth interaction method.
Comput Methods Appl Mech Eng. 2024 Nov 1;431. doi: 10.1016/j.cma.2024.117259. Epub 2024 Aug 6.
3
Transcriptional regulation of postnatal aortic development.
Cells Dev. 2024 Dec;180:203971. doi: 10.1016/j.cdev.2024.203971. Epub 2024 Oct 18.
4
Diabetes-Related Changes in Carotid Wall Properties: Role of Triglycerides.
J Clin Med. 2024 Sep 23;13(18):5654. doi: 10.3390/jcm13185654.
5
Renal denervation restores biomechanics of carotid arteries in a rat model of hypertension.
Sci Rep. 2024 Jan 4;14(1):495. doi: 10.1038/s41598-023-50816-8.
6
A Fluid-Solid-Growth Solver for Cardiovascular Modeling.
Comput Methods Appl Mech Eng. 2023 Dec 15;417(Pt B). doi: 10.1016/j.cma.2023.116312. Epub 2023 Aug 9.
7
Smooth muscle α integrins regulate vascular fibrosis via CD109 downregulation of TGF-β signalling.
Eur Heart J Open. 2023 Feb 16;3(2):oead010. doi: 10.1093/ehjopen/oead010. eCollection 2023 Mar.
8
Acute Mechanical Consequences of Vessel-Specific Coronary Bypass Combinations.
Cardiovasc Eng Technol. 2023 Jun;14(3):404-418. doi: 10.1007/s13239-023-00661-7. Epub 2023 Feb 24.
9
Computational analysis of the role of mechanosensitive Notch signaling in arterial adaptation to hypertension.
J Mech Behav Biomed Mater. 2022 Sep;133:105325. doi: 10.1016/j.jmbbm.2022.105325. Epub 2022 Jun 29.
10
Vascular Alterations Preceding Arterial Wall Thickening in Overweight and Obese Children.
J Clin Med. 2022 Jun 19;11(12):3520. doi: 10.3390/jcm11123520.

本文引用的文献

1
Mechanics of carotid arteries in a mouse model of Marfan Syndrome.
Ann Biomed Eng. 2009 Jun;37(6):1093-104. doi: 10.1007/s10439-009-9686-1. Epub 2009 Apr 7.
2
Origin of axial prestretch and residual stress in arteries.
Biomech Model Mechanobiol. 2009 Dec;8(6):431-46. doi: 10.1007/s10237-008-0146-x.
3
Fundamental role of axial stress in compensatory adaptations by arteries.
J Biomech. 2009 Jan 5;42(1):1-8. doi: 10.1016/j.jbiomech.2008.11.011. Epub 2008 Dec 13.
4
Characterization of arterial wall mechanical behavior and stresses from human clinical data.
J Biomech. 2008 Aug 28;41(12):2618-27. doi: 10.1016/j.jbiomech.2008.06.022. Epub 2008 Aug 5.
5
Mechanisms of arterial remodeling in hypertension: coupled roles of wall shear and intramural stress.
Hypertension. 2008 Aug;52(2):195-200. doi: 10.1161/HYPERTENSIONAHA.107.103440. Epub 2008 Jun 9.
6
Reversible secretion of glycosaminoglycans and proteoglycans by cyclically stretched valvular cells in 3D culture.
Ann Biomed Eng. 2008 Jul;36(7):1092-103. doi: 10.1007/s10439-008-9501-4. Epub 2008 Apr 19.
7
Heterogeneous transmural proteoglycan distribution provides a mechanism for regulating residual stresses in the aorta.
Am J Physiol Heart Circ Physiol. 2008 Mar;294(3):H1197-205. doi: 10.1152/ajpheart.01027.2007. Epub 2007 Dec 21.
8
Time courses of growth and remodeling of porcine aortic media during hypertension: a quantitative immunohistochemical examination.
J Histochem Cytochem. 2008 Apr;56(4):359-70. doi: 10.1369/jhc.7A7324.2007. Epub 2007 Dec 10.
9
Hypertension and hypercholesterolemia differentially affect the function and structure of pig carotid artery.
Hypertension. 2007 Dec;50(6):1063-8. doi: 10.1161/HYPERTENSIONAHA.107.093260. Epub 2007 Oct 29.
10
The adventitia: the outs and ins of vascular disease.
Cardiovasc Res. 2007 Sep 1;75(4):636-9. doi: 10.1016/j.cardiores.2007.07.006. Epub 2007 Jul 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验