Pfaller Martin R, Latorre Marcos, Schwarz Erica L, Gerosa Fannie M, Szafron Jason M, Humphrey Jay D, Marsden Alison L
Department of Pediatrics - Cardiology, Stanford Univeristy, Stanford, CA 94305, USA.
Center for Research and Innovation in Bioengineering, Universitat Politècnica de València, València, Spain.
Comput Methods Appl Mech Eng. 2024 Nov 1;431. doi: 10.1016/j.cma.2024.117259. Epub 2024 Aug 6.
Equilibrated fluid-solid-growth (FSGe) is a fast, open source, three-dimensional (3D) computational platform for simulating interactions between instantaneous hemodynamics and long-term vessel wall adaptation through mechanobiologically equilibrated growth and remodeling (G&R). Such models can capture evolving geometry, composition, and material properties in health and disease and following clinical interventions. In traditional G&R models, this feedback is modeled through highly simplified fluid solutions, neglecting local variations in blood pressure and wall shear stress (WSS). FSGe overcomes these inherent limitations by strongly coupling the 3D Navier-Stokes equations for blood flow with a 3D equilibrated constrained mixture model (CMMe) for vascular tissue G&R. CMMe allows one to predict long-term evolved mechanobiological equilibria from an original homeostatic state at a computational cost equivalent to that of a standard hyperelastic material model. In illustrative computational examples, we focus on the development of a stable aortic aneurysm in a mouse model to highlight key differences in growth patterns between FSGe and solid-only G&R models. We show that FSGe is especially important in blood vessels with asymmetric stimuli. Simulation results reveal greater local variation in fluid-derived WSS than in intramural stress (IMS). Thus, differences between FSGe and G&R models became more pronounced with the growing influence of WSS relative to pressure. Future applications in highly localized disease processes, such as for lesion formation in atherosclerosis, can now include spatial and temporal variations of WSS.
平衡流固生长(FSGe)是一个快速、开源的三维(3D)计算平台,用于通过机械生物学平衡生长和重塑(G&R)来模拟瞬时血流动力学与长期血管壁适应性之间的相互作用。此类模型能够捕捉健康和疾病状态下以及临床干预后的不断演变的几何形状、成分和材料特性。在传统的G&R模型中,这种反馈是通过高度简化的流体解决方案来建模的,忽略了血压和壁面剪应力(WSS)的局部变化。FSGe通过将用于血流的三维纳维-斯托克斯方程与用于血管组织G&R的三维平衡约束混合模型(CMMe)紧密耦合,克服了这些固有局限性。CMMe使人们能够从原始的稳态预测长期演变的机械生物学平衡,其计算成本与标准超弹性材料模型相当。在说明性计算示例中,我们专注于小鼠模型中稳定主动脉瘤的发展,以突出FSGe与仅固体G&R模型在生长模式上的关键差异。我们表明,FSGe在具有不对称刺激的血管中尤为重要。模拟结果显示,与壁内应力(IMS)相比,流体衍生的WSS的局部变化更大。因此,随着WSS相对于压力的影响不断增加,FSGe与G&R模型之间的差异变得更加明显。在高度局部化的疾病过程中的未来应用,例如动脉粥样硬化病变形成,现在可以包括WSS的空间和时间变化。