Suppr超能文献

护士健康研究中慢性PM10暴露的时空建模

Spatio-temporal modeling of chronic PM10 exposure for the Nurses' Health Study.

作者信息

Yanosky Jeff D, Paciorek Christopher J, Schwartz Joel, Laden Francine, Puett Robin, Suh Helen H

机构信息

Exposure, Epidemiology and Risk Program, Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA.

出版信息

Atmos Environ (1994). 2008 Jun 1;42(18):4047-4062. doi: 10.1016/j.atmosenv.2008.01.044.

Abstract

Chronic epidemiological studies of airborne particulate matter (PM) have typically characterized the chronic PM exposures of their study populations using city- or countywide ambient concentrations, which limit the studies to areas where nearby monitoring data are available and which ignore within-city spatial gradients in ambient PM concentrations. To provide more spatially refined and precise chronic exposure measures, we used a Geographic Information System (GIS)-based spatial smoothing model to predict monthly outdoor PM(10) concentrations in the northeastern and midwestern United States. This model included monthly smooth spatial terms and smooth regression terms of GIS-derived and meteorological predictors. Using cross-validation and other pre-specified selection criteria, terms for distance to road by road class, urban land use, block group and county population density, point- and area-source PM(10) emissions, elevation, wind speed, and precipitation were found to be important determinants of PM(10) concentrations and were included in the final model. Final model performance was strong (cross-validation R(2)=0.62), with little bias (-0.4 mug m(-3)) and high precision (6.4 mug m(-3)). The final model (with monthly spatial terms) performed better than a model with seasonal spatial terms (cross-validation R(2)=0.54). The addition of GIS-derived and meteorological predictors improved predictive performance over spatial smoothing (cross-validation R(2)=0.51) or inverse distance weighted interpolation (cross-validation R(2)=0.29) methods alone and increased the spatial resolution of predictions. The model performed well in both rural and urban areas, across seasons, and across the entire time period. The strong model performance demonstrates its suitability as a means to estimate individual-specific chronic PM(10) exposures for large populations.

摘要

对空气中颗粒物(PM)的慢性流行病学研究通常使用城市或县范围内的环境浓度来表征其研究人群的慢性PM暴露情况,这将研究限制在有附近监测数据的区域,并且忽略了城市内部环境PM浓度的空间梯度。为了提供空间上更精细和精确的慢性暴露测量,我们使用基于地理信息系统(GIS)的空间平滑模型来预测美国东北部和中西部地区每月的室外PM10浓度。该模型包括GIS衍生和气象预测因子的月度平滑空间项和平滑回归项。通过交叉验证和其他预先指定的选择标准,发现按道路类别到道路的距离、城市土地利用、街区组和县人口密度、点源和面源PM10排放、海拔、风速和降水等项是PM10浓度的重要决定因素,并被纳入最终模型。最终模型表现强劲(交叉验证R2 = 0.62),偏差很小(-0.4 μg m-3)且精度很高(6.4 μg m-3)。最终模型(带有月度空间项)比带有季节空间项的模型表现更好(交叉验证R2 = 0.54)。与单独的空间平滑(交叉验证R2 = 0.51)或反距离加权插值(交叉验证R2 = 0.29)方法相比,添加GIS衍生和气象预测因子提高了预测性能,并提高了预测的空间分辨率。该模型在农村和城市地区、不同季节以及整个时间段内都表现良好。强大的模型性能表明它适合作为估计大量人群个体特异性慢性PM10暴露的一种方法。

相似文献

1
Spatio-temporal modeling of chronic PM10 exposure for the Nurses' Health Study.
Atmos Environ (1994). 2008 Jun 1;42(18):4047-4062. doi: 10.1016/j.atmosenv.2008.01.044.
4
5
Spatial modeling of PM10 and NO2 in the continental United States, 1985-2000.
Environ Health Perspect. 2009 Nov;117(11):1690-6. doi: 10.1289/ehp.0900840. Epub 2009 Jun 29.
9
The London low emission zone baseline study.
Res Rep Health Eff Inst. 2011 Nov(163):3-79.

引用本文的文献

1
Exposure Measurement Error Correction in Longitudinal Studies With Discrete Outcomes.
Stat Med. 2025 Jul;44(15-17):e70191. doi: 10.1002/sim.70191.
5
Associations between long-term aircraft noise exposure, cardiovascular disease, and mortality in US cohorts of female nurses.
Environ Epidemiol. 2023 Jun 21;7(4):e259. doi: 10.1097/EE9.0000000000000259. eCollection 2023 Aug.
6
Correcting for bias due to mismeasured exposure history in longitudinal studies with continuous outcomes.
Biometrics. 2023 Dec;79(4):3739-3751. doi: 10.1111/biom.13877. Epub 2023 May 24.
7
Long-term aircraft noise exposure and risk of hypertension in the Nurses' Health Studies.
Environ Res. 2022 May 1;207:112195. doi: 10.1016/j.envres.2021.112195. Epub 2021 Oct 7.
8
Smoking, air pollution, and lung cancer risk in the Nurses' Health Study cohort: time-dependent confounding and effect modification.
Crit Rev Toxicol. 2020 Mar;50(3):189-200. doi: 10.1080/10408444.2020.1727410. Epub 2020 Mar 12.
9
Particulate Matter and Albuminuria, Glomerular Filtration Rate, and Incident CKD.
Clin J Am Soc Nephrol. 2020 Mar 6;15(3):311-319. doi: 10.2215/CJN.08350719. Epub 2020 Feb 27.
10
Spatial variation in the effects of air pollution on cardiovascular mortality in Beijing, China.
Environ Sci Pollut Res Int. 2019 Jan;26(3):2501-2511. doi: 10.1007/s11356-018-3725-0. Epub 2018 Nov 24.

本文引用的文献

1
Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada.
J Toxicol Environ Health A. 2007 Feb 1;70(3-4):200-12. doi: 10.1080/15287390600883018.
2
Long-term exposure to air pollution and incidence of cardiovascular events in women.
N Engl J Med. 2007 Feb 1;356(5):447-58. doi: 10.1056/NEJMoa054409.
3
GIS approaches for the estimation of residential-level ambient PM concentrations.
Environ Health Perspect. 2006 Sep;114(9):1374-80. doi: 10.1289/ehp.9169.
4
Spatial analysis of air pollution and mortality in Los Angeles.
Epidemiology. 2005 Nov;16(6):727-36. doi: 10.1097/01.ede.0000181630.15826.7d.
5
Comparison of spatial interpolation methods for the estimation of air quality data.
J Expo Anal Environ Epidemiol. 2004 Sep;14(5):404-15. doi: 10.1038/sj.jea.7500338.
10
Estimation of long-term average exposure to outdoor air pollution for a cohort study on mortality.
J Expo Anal Environ Epidemiol. 2001 Nov-Dec;11(6):459-69. doi: 10.1038/sj.jea.7500189.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验