Suppr超能文献

模拟加拿大多伦多市城区内环境交通污染的变化情况。

Modeling the intraurban variability of ambient traffic pollution in Toronto, Canada.

作者信息

Jerrett M, Arain M A, Kanaroglou P, Beckerman B, Crouse D, Gilbert N L, Brook J R, Finkelstein N, Finkelstein M M

机构信息

Division of Environmental Health Sciences School of Public Health, University of California-Berkeley, Berkeley, California 94720-7360, USA.

出版信息

J Toxicol Environ Health A. 2007 Feb 1;70(3-4):200-12. doi: 10.1080/15287390600883018.

Abstract

The objective of this paper is to model determinants of intraurban variation in ambient concentrations of nitrogen dioxide (NO2) in Toronto, Canada, with a land use regression (LUR) model. Although researchers have conducted similar studies in Europe, this work represents the first attempt in a North American setting to characterize variation in traffic pollution through the LUR method. NO2 samples were collected over 2 wk using duplicate two-sided Ogawa passive diffusion samplers at 95 locations across Toronto. Independent variables employed in subsequent regression models as predictors of NO2 were derived by the Arc 8 geographic information system (GIS). Some 85 indicators of land use, traffic, population density, and physical geography were tested. The final regression model yielded a coefficient of determination (R2) of .69. For the traffic variables, density of 24-h traffic counts and road measures display positive associations. For the land use variables, industrial land use and counts of dwellings within 2000 m of the monitoring location were positively associated with NO2. Locations up to 1500 m downwind of major expressways had elevated NO2 levels. The results suggest that a good predictive surface can be derived for North American cities with the LUR method. The predictive maps from the LUR appear to capture small-area variation in NO2 concentrations. These small-area variations in traffic pollution are probably important to the exposure experience of the population and may detect health effects that would have gone unnoticed with other exposure estimates.

摘要

本文的目的是使用土地利用回归(LUR)模型,对加拿大多伦多市城区内二氧化氮(NO₂)环境浓度变化的决定因素进行建模。尽管研究人员在欧洲开展过类似研究,但这项工作是在北美环境下首次尝试通过LUR方法来描述交通污染的变化情况。使用一式两份的双面小川被动扩散采样器,在多伦多市95个地点,历时2周采集了NO₂样本。后续回归模型中用作NO₂预测指标的自变量,是通过Arc 8地理信息系统(GIS)得出的。对约85个土地利用、交通、人口密度和自然地理指标进行了测试。最终回归模型的决定系数(R²)为0.69。对于交通变量,24小时交通流量密度和道路指标呈现正相关。对于土地利用变量,工业用地以及监测地点2000米范围内的住宅数量与NO₂呈正相关。在主要高速公路下风方向1500米范围内的地点,NO₂水平有所升高。结果表明,使用LUR方法可为北美城市得出良好的预测表面。LUR生成的预测地图似乎能够捕捉到NO₂浓度的小区域变化。交通污染的这些小区域变化可能对人群的暴露经历很重要,并且可能检测到其他暴露估计中未被注意到的健康影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验