Suppr超能文献

大鼠行为研究中的多变量数据处理:一种综合方法。

Multivariate data handling in the study of rat behavior: an integrated approach.

作者信息

Casarrubea Maurizio, Sorbera Filippina, Crescimanno Giuseppe

机构信息

Department of Experimental Medicine, Università di Palermo, Palermo, Italy.

出版信息

Behav Res Methods. 2009 Aug;41(3):772-81. doi: 10.3758/BRM.41.3.772.

Abstract

The aim of the present article is to provide a methodological description of various approaches to multivariate data handling in the study of rodent behavior. To this purpose, 42 male Wistar rats were tested in an open field, and their behavior was recorded through a digital video camera for a subsequent analysis by means of a software coder. After a preliminary evaluation of descriptive features such as durations and percent distributions, we carried out different kinds of multivariate approaches represented by stochastic, cluster, adjusted residual, and T-pattern analyses. In the attempt to depict behavior in a straightforward way, the results of each analysis were graphically illustrated through path diagrams, dendrograms, histograms, and tree-shaped T-patterns. Path diagrams showed a clear behavioral convergence toward immobile sniffing; dendrograms highlighted three different dyadic clusters: walking/climbing, immobile-sniffing/immobility, and paw-licking/grooming; adjusted residuals confirmed, for the same patterns, highly significant association values; finally, T-pattern analysis showed a highly recurring temporal sequence of events encompassing walking, climbing, immobile sniffing, and immobility. Such results, drawing attention to specific behavioral patternings, strengthen and extend previous findings on rodent behavior. We suggest that T-pattern analysis, integrated with other multivariate approaches, can provide a more detailed and complete rat behavior representation, very different from classical quantitative approaches.

摘要

本文旨在对啮齿动物行为研究中多变量数据处理的各种方法进行方法学描述。为此,对42只雄性Wistar大鼠在旷场中进行测试,并通过数字摄像机记录其行为,随后借助软件编码器进行分析。在对持续时间和百分比分布等描述性特征进行初步评估后,我们进行了以随机分析、聚类分析、调整残差分析和T型模式分析为代表的不同类型的多变量分析。为了以直观的方式描绘行为,每种分析的结果都通过路径图、树状图、直方图和树形T型模式以图形方式进行了说明。路径图显示行为明显趋向于静止嗅探;树状图突出了三个不同的二元聚类:行走/攀爬、静止嗅探/静止不动以及舔爪/梳理毛发;调整残差证实了相同模式下具有高度显著的关联值;最后,T型模式分析显示了一个高度重复的事件时间序列,包括行走、攀爬、静止嗅探和静止不动。这些结果关注特定的行为模式,强化并扩展了先前关于啮齿动物行为的研究发现。我们认为,将T型模式分析与其他多变量方法相结合,可以提供一种与经典定量方法截然不同的、更详细和完整的大鼠行为表征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验