Key Lab of Molecular Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
Mol Divers. 2010 Nov;14(4):815-9. doi: 10.1007/s11030-009-9177-1. Epub 2009 Jul 10.
Identifying the cooperation between transcription factors is crucial and challenging to uncover the mystery behind the complex gene expression patterns. Computational methods aimed to infer transcription factor cooperation are expected to get good results if we can integrate the knowledge (existed functional/structural annotations) of proteins. In this contribution, we proposed an information integrative computational framework to infer the cooperation between transcription factors, which relies on the hybridization-space method that can integrate the annotation information of proteins. In our computational experiments, by using function domain annotations only, on our testing dataset, the overall prediction accuracy and the specificity reaches 84.3% and 76.9%, respectively, which is a fairly good result and outperforms the prediction by both amino acid composition-based method and BLAST-based approach. The corresponding online service TFIPS (Transcription Factor Interaction Prediction System) is available on http://pcal.biosino.org/cgi-bin/TFIPS/TFIPS.pl.
识别转录因子之间的合作关系对于揭示复杂基因表达模式背后的奥秘至关重要,具有挑战性。如果我们能够整合蛋白质的知识(已有的功能/结构注释),那么旨在推断转录因子合作关系的计算方法有望取得良好的效果。在本研究中,我们提出了一种信息综合的计算框架来推断转录因子之间的合作关系,该框架依赖于杂交空间方法,该方法可以整合蛋白质的注释信息。在我们的计算实验中,仅使用功能域注释,在我们的测试数据集上,整体预测准确性和特异性分别达到 84.3%和 76.9%,这是一个相当不错的结果,优于基于氨基酸组成的方法和 BLAST 方法的预测。相应的在线服务 TFIPS(转录因子相互作用预测系统)可在 http://pcal.biosino.org/cgi-bin/TFIPS/TFIPS.pl 上获得。